
OpenAPS Documentation
Release 0.0.0

Ben West

March 29, 2016

Contents

1 Introduction 1
1.1 Understanding this guide . 1

1.1.1 Before you get started . 1
1.1.2 What you won’t see in this guide . 1

1.2 Ways to Contribute . 2
1.3 Where to go for help with your implementation . 2

1.3.1 Gitter . 2
1.3.2 Google Groups . 3
1.3.3 Issues on openaps GitHub . 3
1.3.4 Other online forums . 3

2 Walkthrough 5
2.1 Phase 0: General Setup . 5

2.1.1 General Setup and Project Prep . 5
2.1.2 Baseline data . 5
2.1.3 Hardware . 6
2.1.4 Setting Up Your Raspberry Pi . 10
2.1.5 Setting Up openaps and Dependencies . 18

2.2 Phase 1: Logging, Cleaning, and Analyzing Your Data . 19
2.2.1 Phase 1: Logging, Cleaning, and Analyzing Your Data . 19
2.2.2 Visualization and Monitoring . 19

2.3 Phase 2: Build a Manual System . 22
2.3.1 Phase 2: Creating an Open Loop . 22
2.3.2 Configuring and Learning to Use openaps Tools . 23
2.3.3 Building preflight and other safety checks . 30
2.3.4 Add the oref0 Virtual Devices . 31
2.3.5 Organizing the reports . 31
2.3.6 The get-profile process . 31
2.3.7 The calculate-iob process . 32
2.3.8 The determine-basal process . 33
2.3.9 Adding aliases . 33
2.3.10 Checking your reports . 33
2.3.11 Enacting the suggested action . 34
2.3.12 Cleaning CGM data from Minimed CGM systems . 35
2.3.13 Running an open loop with oref0 . 35

2.4 Phase 3: Automation . 35
2.4.1 Phase 3: Understanding Your Open Loop . 35
2.4.2 Understanding the output of oref0-determine-basal . 35

i

2.5 Phase 4: Iterate and Improve . 37
2.5.1 Phase 4: Starting to Close the Loop . 37
2.5.2 Using cron to create a schedule for your loop . 37
2.5.3 Observing the closed loop . 37
2.5.4 Troubleshooting the closed loop . 38

2.6 Phase 5: Tuning the Closed Loop . 39
2.6.1 Phase 5: Tuning the Closed Loop . 39
2.6.2 Going beyond low glucose suspend mode . 39
2.6.3 Tuning your targets . 40

2.7 Phase 6: Iterate and Improve the Closed Loop . 40
2.7.1 Phase 6: Iterating on Your Closed Loop . 40
2.7.2 So you think you’re looping? Now keep up to date! . 40
2.7.3 Testing during the day . 41
2.7.4 Advanced features . 41
2.7.5 Configuring Automatic Sensitivity Mode . 42

3 Resources 45
3.1 Making your first PR (pull request) . 45
3.2 Technical Resources . 46

3.2.1 Raspberry Pi . 46
3.2.2 Git and GitHub . 46
3.2.3 Linux Shell / Terminal . 46
3.2.4 Python . 46
3.2.5 Useful Apps . 47
3.2.6 Markdown & GitBook . 47

3.3 Troubleshooting . 47
3.3.1 Generally useful linux commands . 47
3.3.2 Dealing with the CareLink USB Stick . 48
3.3.3 Dealing with a corrupted git repository . 48
3.3.4 Environment variables . 48
3.3.5 Common error messages . 49

3.4 OpenAPS Overview and Project History . 49
3.5 Other People, Projects & Tools . 50

3.5.1 People . 50
3.5.2 APS & Diabetes Data Tools . 50

3.6 Commercial APS Efforts . 50
3.7 Frequently Asked Questions . 51

3.7.1 What is a Closed Loop? . 51
3.7.2 What does an OpenAPS closed loop look like? . 51

3.8 Glossary . 52

4 Reference 55
4.1 Manuals . 55

4.1.1 openaps . 55
4.1.2 oref0 . 60
4.1.3 Nightscout . 63
4.1.4 mm . 64

4.2 API . 70
4.2.1 API Reference . 70

5 Indices and tables 93

Python Module Index 95

ii

CHAPTER 1

Introduction

Introduction section includes:

• Understanding This Guide

• Ways to Contribute

• Where to Go For Help With Your Implementation

1.1 Understanding this guide

Some conventions used in this guide:

• Wherever you see text that is formatted like this, it is a code snippet. You should copy and paste instead of
attempting to type this out; this will save you debugging time for finding your typos.

• You will see a $ at the beginning of many of the lines of code. This indicates that it is to be entered and executed
at the terminal prompt. Do not type in the dollar sign $.

• Wherever there are <bracketed_components> in the the code, these are meant for you to insert your own
information. Most of the time, it doesn’t matter what you choose as long as you stay consistent throughout
this guide. That means if you choose Barney as your <my_pump_name>, you must use Barney every time
you see <my_pump_name>. Choose carefully. Do not include the < > brackets in your name.

1.1.1 Before you get started

Some familiarity with using the terminal will go a long way, so if you aren’t comfortable with what cd and ls do,
take a look at some of the Linux Shell / Terminal commands on the Troubleshooting page and the reference links on
the Technical Resources page.

One helpful thing to do before starting any software work is to log your terminal session. This will allow you to
go back and see what you did at a later date. This will also be immensely helpful if you request help from other
OpenAPS contributors as you will be able to provide an entire history of the commands you used. To enable this,
just run $ script <filename> at the beginning of your session. It will inform you that Script started,
file is <filename>. When you are done, simply $ exit and it will announce Script done, file is
<filename>. At that point, you can review the file as necessary.

1.1.2 What you won’t see in this guide

You won’t see a full loop where you can just download the code, press a button, and have a live loop. There are
many places where there are examples, and instructions, but you must do the work to understand how to communicate

1

OpenAPS Documentation, Release 0.0.0

between devices and transfer data between reports and files. This is key for helping you understand what you are
building and how it will work.

In some cases, the documentation needs to be built out further, with easier to understand language and more examples.
However, there are a few things (like a full cron example) that are not included in this guide, and intentionally so in
order to ensure that you have full intent and autonomy in building your system for yourself.

1.2 Ways to Contribute

OpenAPS doesn’t require you to be a formally trained engineer/developer/anything to get started or use these tools.
The main requirement is interest and willingness to safely DIY new technology that may help improve your life as
well as others.

If you’re not sure where to get started, here are some ways to get involved:

• Do a fresh install using this guide and see where you get stuck; if you have to do something off-script, there is
a reasonable chance the script is either wrong or your case is “special” and should be accounted for here. Make
edits and submit a pull request to change the document and assist others.

• Additionally, this guide needs more work, always. If there is something that is not documented, do one of two
things: a) submit a pull request (see above). or b) log an “issue” (go here to see the open issues) about the
section or thing that needs more documentation.

• Ask questions on gitter; if your question wasn’t answered in this doc and gets answered there, chances are it
should be included here—go ahead and add it to the appropriate section.

• Test the openaps tools for different use cases and report back with your findings. Logs files and, if you’re
comfortable, associated device data (CareLink CSV files, for example) are extremely helpful for debugging.

• Submit issues on GitHub and work with other contributors to get them resolved.

• Develop a plugin to enhance the functionality or ease-of-use of openaps.

• Spread the word about #OpenAPS and get others involved; the more, the merrier. (You can direct them to
OpenAPS.org for more information.)

• Consider calling your device manufacturer and ask about communication protocols in order to understand how
your device operates.

If you would like to work on the core openaps code, take a look at the openaps contributing guidelines before getting
started.

1.3 Where to go for help with your implementation

There are several ways to communicate with other participants and contributors in the #OpenAPS project. See also
the Resources section for additional assistance.

Note: It’s best practice not to share your pump’s serial number, so make sure not to include it in pictures or pasted text
output when seeking help on pump communication.

1.3.1 Gitter

Gitter is a messaging/chat service similar to IRC. It provides integration with GitHub and several other services.

2 Chapter 1. Introduction

https://github.com/openaps/docs/issues
https://gitter.im/nightscout/intend-to-bolus
http://OpenAPS.org
https://github.com/openaps/openaps/blob/master/CONTRIBUTING.md
https://openaps.readthedocs.org/en/bewest-dev-w-dana/docs/Resources.html
https://gitter.im/

OpenAPS Documentation, Release 0.0.0

• The nightscout/intend-to-bolus channel is where you will find active #OpenAPS discussions ranging from tech-
nical issues with openaps tools to control theory to general information. It is a great place to introduce yourself
and get some help from those who are a few steps further down the road.

• For TI stick communication, use the oskarpearson/mmeowlink channel

• For RileyLink conversations, use the ps2/rileylink channel

• For LoopKit conversations, use the loudnate/LoopKit channel

1.3.2 Google Groups

A private google group focused on #OpenAPS development work can be found here. Request access to participate
and see some of the archived discussions. If you’re new, make sure to introduce yourself!

1.3.3 Issues on openaps GitHub

For reporting issues on the openaps tools formally, the openaps issues page on GitHub is the proper forum. Feel free
to try and get through the issues by working with others on the Gitter channel first if you think it may be something
unrelated to the codebase.

1.3.4 Other online forums

Those in the #OpenAPS community are frequently found in other forums, such as on Twitter (using the #OpenAPS
hashtag, as well as #WeAreNotWaiting) and on Facebook in the “CGM In The Cloud” group.

There is also a Slack channel to discuss communication around other pumps that are being explored for being used for
other DIY closed loops.

1.3. Where to go for help with your implementation 3

https://gitter.im/nightscout/intend-to-bolus
https://giter.im/oskarpearson/mmeowlink
https://gitter.im/ps2/rileylink
https://gitter.im/loudnate/loopkit
https://groups.google.com/d/forum/openaps-dev
https://github.com/openaps/openaps/issues
https://twitter.com/search?f=tweets&vertical=default&q=%23OpenAPS&src=typd
https://twitter.com/search?f=tweets&vertical=default&q=%23OpenAPS&src=typd
https://twitter.com/search?f=tweets&vertical=default&q=%23WeAreNotWaiting&src=typd
https://www.facebook.com/groups/cgminthecloud/
https://omniapsslack.azurewebsites.net/

OpenAPS Documentation, Release 0.0.0

4 Chapter 1. Introduction

CHAPTER 2

Walkthrough

2.1 Phase 0: General Setup

2.1.1 General Setup and Project Prep

The setup process is broken into four parts: acquiring the hardware you need; storing baseline data; configuring the
Raspberry Pi and installing the openaps tools and dependencies. After completing these steps, you will be able to use
the openaps tools to communicate with your insulin pump and CGM.

At this stage, you may want to begin documenting each step that you take. This will help in two ways.

First, this enables you to better ask for assistance if you run into errors, bugs, etc. By explaining where you are in
the documentation and what you’re seeing (by copying and pasting your last command and the output), someone can
better provide tips on what you should consider next.

Second, this will enable you to help us improve our documentation. Did we skip a step, or not explain clearly? After
you get through the setup instructions, you should consider forking a copy of these docs, editing with any changes you
think should be made, and submitting a pull request (PR) back to the master. Others will be able to review & discuss
any edits, make further changes, and pull this edits into the main file. This helps us all “pay it forward” as we go!

2.1.2 Baseline data

There is no requirement to share your data to use the openaps toolset or participate in the OpenAPS project. Individuals
within the project who share their data do so at will and you should do the same only if you feel comfortable. That
being said, it is always a good idea to record your data before embarking on a new set of experiments. This will be
helpful to understand the effects of the system as well as gain a better understanding of your response to different
control strategies.

CGM Data

Before getting started, we ask that you store at least 30 days of CGM data. For now, the easiest way to do that is to
upload your Dexcom receiver to Dexcom Studio or, if you use a Medtronic CGM, upload your CGM data to CareLink.
We suggest you get in the habit of doing this regularly so that you have ongoing data to show trends in your overall
estimated average glucose (eAG, a good indicator in trends in A1c) and variations in your “time in range.”

5

OpenAPS Documentation, Release 0.0.0

Recent A1c

Go ahead and document your most recent A1c and keep it somewhere handy. This will allow you to compare your
before/after results as well as be able to share it (if you choose) once there is a request from OpenAPS researchers,
who may aggregate anonymous data to show what happens when people use OpenAPS.

Get comfortable making a PR

You should be comfortable making a PR to this documentation. If you haven’t ever done this, click here and try it out.

2.1.3 Hardware

This section describes the hardware components required for a ‘typical’ OpenAPS implementation. There are numer-
ous variations and substitutions that can be made but the following items are recommended for getting started. If you
come across something that doesn’t seem to work, is no longer available, or if you have a notable alternative, feel free
to edit this document with your suggestions.

If you’re interested in working on communication for another pump (Omnipod, Animas, etc), click here to join the
collaboration group focusing on alternative pump communication.

Required Hardware for a “typical” setup

• An Insulin Pump:

– One of the following Medtronic MiniMed model #s:

* 512/712

* 515/715

* 522/722

* 523/723 (with firmware 2.4A or lower)

* 554 (European Veo, with firmware 2.6A or lower)

• A way to communicate with the pump:

– Medtronic CareLink USB stick is the recommended option for your initial loop setup

– Note that there are now other hardware options available to communicate with the pump. Some positives
to an alternative include better range; some negatives include having to solder and the fact that they’re not
documented in this set of documentation yet. But if you’re interested, check out some of the alternatives
in the mmeowlink wiki.

• A Continuous Glucose Monitor (CGM):

• Dexcom CGM (G4 Platinum or Platinum with Share system); a G5 can be used but at this point requires
additional work to be used.

• OR

• Medtronic CGM (MiniMed Paradigm REAL-Time Revel or Enlite)

• Other Supplies:

– Note the below setup is what is used for the documentation; again see the mmeowlink wiki for some
alternatives to the Raspberry Pi.

• Raspberry Pi 2 Model B (“RPi2”)**(see note below)

6 Chapter 2. Walkthrough

https://openaps.readthedocs.org/en/bewest-dev-w-dana/docs/Resources/my-first-pr.html.html
http://bit.ly/1nTtccH
https://github.com/oskarpearson/mmeowlink/wiki
https://github.com/oskarpearson/mmeowlink/wiki

OpenAPS Documentation, Release 0.0.0

• 8 GB (or greater) micro SD card

• Micro SD card to regular SD card converter [optional, but recommended so that you can use the micro SD card
in a regular sized SD card drive]

• Low-profile USB WiFi adapter

• 2.1 Amp (or greater) USB power supply or battery

• Micro USB cable(s)

• AAA batteries (for pump)

• Case [optional]

• Cat5 or Cat6 Ethernet cable [optional]

• HDMI cable [optional, used for connecting the RPi2 to a screen for initial setup ease]

• USB Keyboard [optional, used to interact with the RPi2 via its own graphics interface on your TV screen]

• USB Mouse [optional, for the same purpose]

** Several #OpenAPS contributors recommend the Raspberry Pi 2 CanaKit, which includes several essential acces-
sories in one package and can be purchased through Amazon

The CanaKit has the RPi2, SD card, WiFi adapter, and wall power supply. It also comes with a case, HDMI cable,
and heat sink, none of which are required for an OpenAPS build. The kit does not have a micro USB cable (required
to connect a Dexcom G4 receiver to the RPi) or a battery, which can be used in lieu of the wall power supply for
portability.

Eventually, once you have an entire OpenAPS build up and running, it is recommended that you have backup sets of
equipment in case of failure.

Hardware Details & Recommendations

Medtronic Insulin Pump

See currently known working list of pumps above. The easiest way to navigate to the Utilities / Connect Devices menu
on your pump. If “PC Connect” is present in this menu, your pump is not compatible with OpenAPS.

Due to changes in the firmware, the openaps tools are only able to function in full on the above pump models. Security
features were added in firmware version 2.5A that prevent making some remote adjustments via the CareLink USB
stick. Each pump series is slightly different, and openaps functionality is still being ironed out for some of them. For
512/712 pumps, certain commands like Read Settings, BG Targets and certain Read Basal Profile are not available,
and requires creating a static json for needed info missing to successfully run the loop (see example here).

If you need to acquire an appropriate pump check CraigsList or other sites like Medwow or talk to friends in your
local community to see if there are any old pumps lying around in their closets gathering dust. MedWow is an eBay-
like source for used pumps. Note: If you’re buying a pump online, we recommended you ask the seller to confirm
the firmware version of the pump. (You may also want to consider asking for a video of the pump with working
functionality before purchasing.)

There are several #OpenAPS participants working on ways to use other pumps (including non-Medtronic models). If
you would like to get more information on the progress in these areas, take a look at the #OpenAPS Google Group or
click here to join the Slack channel.

2.1. Phase 0: General Setup 7

http://www.amazon.com/CanaKit-Raspberry-Complete-Original-Preloaded/dp/B008XVAVAW/
http://bit.ly/1itCsRl
http://www.medwow.com
https://groups.google.com/d/forum/openaps-dev
http://bit.ly/1nTtccH

OpenAPS Documentation, Release 0.0.0

CareLink USB Stick

Currently, the primary supported device* (in the openaps documentation) for uploading pump data and interfacing on
the #OpenAPS is the CareLink USB stick. We recommend you purchase at least two sticks because if one breaks,
acquiring another stick will take time and will delay development. Additionally, due to the short range of communi-
cation between the CareLink stick and the Medtronic pumps, some users set up multiple sticks in different locations
to maximize the chances of successful transmissions.

Some places to purchase: Medtronic or American Diabetes Wholesale.

A limitation of the Carelink USB stick is the short range of radio communications with the Medtronic pump. The
radio signals are trasmitted from the end of the stick opposite the USB connector, on the flat grey side of the stick
(see this set of experiments for details). Using a USB extension cable and angling the stick appropriately will assist in
improving the connection.

Rerii 90 Degree USB Extension Cable

Mediabridge Products USB Extension Cable

CGM: Dexcom G4 Platinum System (with or without Share) OR Medtronic

The openaps tool set currently supports two different CGM systems: the Dexcom G4 Platinum system (with or without
the Share functionality) and the Medtronic system. With Dexcom, the Share platform is not required as communication
with the receiver is usually accomplished via USB directly to the Pi. A G5 can also be used, but may require some extra
work beyond this setup guide in order to configure. You can also [pull CGM data from Nightscout as an alternative,
or use xDrip (see below). The Medtronic CGM system communicates directly with the associated pump, so the data
can be retrieved using the CareLink USB stick.

Using the Dexcom CGM:

Note: Your Dexcom should be nearly fully charged before plugging it in to your Raspberry Pi. If, when you plug in
your receiver, it causes your WiFi dongle to stop blinking, that is a sign that it is drawing too much power and needs
to be charged. Once the receiver is fully charged, it will stay charged when connected to the Pi.

Your OpenAPS implementation can also pull CGM data from a Nightscout site in addition to pulling from the CGM
directly.

• You can find more documentation about pulling CGM data from a Nightscout site here.

• If you have an Android phone, you can use the xDrip app to get your data from the Dexcom to Nightscout, to
then be used in OpenAPS.

• If you have a Share receiver follow these directions to set up your Android uploader and Nightscout website.

• You could also build a DIY receiver. Directions to build the receiver, set up your uploader and Nightscout can
be found here.

• You can also use part of the DIY receiver set up - the wixel – directly to the raspberry pi. Learn more about the
wixel setup here and here.

Using the Medtronic CGM:

Because the Medronic pump collects data directly from the Enlite sensors, OpenAPS will retrieve CGM data in
addition to your regular pump data from your pump. While you use the same OpenAPS commands to get it, the
Medtronic CGM data need a little special formatting after being retrieved. We’ll discuss these special circumstances
as they come up later.

8 Chapter 2. Walkthrough

https://medtronicdiabetes.secure.force.com/store/remotes-parts/carelink-usb-device/usb-wireless-upload-device
http://www.adwdiabetes.com/product/minimed-carelink-usb-upload_1164.htm
https://gist.github.com/channemann/0ff376e350d94ccc9f00
http://www.amazon.com/gp/product/B00ZQVADNM
https://www.mediabridgeproducts.com/product/usb-2-0-usb-extension-cable-a-male-to-a-female-6-inches/
http://www.dexcom.com/dexcom-g4-platinum-share
https://www.medtronicdiabetes.com/treatment-and-products/enlite-sensor
https://openaps.readthedocs.org/en/bewest-dev-w-dana/docs/walkthrough/phase-2/using-openaps-tools.html.html#pulling-blood-glucose-levels-from-nightscout
http://www.nightscout.info/wiki/welcome/nightscout-with-xdrip-and-dexcom-share-wireless
http://www.nightscout.info/wiki/nightscout-with-xdrip-wireless-bridge
https://github.com/jamorham/python-usb-wixel-xdrip
https://github.com/ochenmiller/wixelpi_uploader

OpenAPS Documentation, Release 0.0.0

Raspberry Pi 2 Model B

The Raspberry Pi 2 (RPi2) model B is a credit-card sized single-board computer. The RPi2 primarily uses Linux
kernel based operating systems, which must be installed by the user onto a micro SD card for the RPi2 to work. The
RPi2 currently only supports Ubuntu, Raspbian, OpenELEC, and RISC OS. We recommend installing either Ubuntu
or Raspbian. In this tutorial, you will learn how to do a “cableless” and “headless” install of Raspbian. You will be
able to access and control the RPi2 via an SSH client on Windows, Mac OS X, Linux, iOS, or Android.

The RPi2 has 4 USB ports, an ethernet port, an HDMI port, and a micro USB power-in jack that accepts 2.1 Amp
power supplies. In this tutorial, you will need to access the USB ports, micro USB power-in jack, and possibly the
Ethernet jack (if wireless failure occurs). You will not require the HDMI port or a monitor.

Raspberry Pi 2 Model B

Micro SD Card

An 8 or 16 GB micro SDHC card is recommended. Get one that is class-4 or greater and is a recognized name brand,
such as SanDisk, Kingston, or Sony. A list of verified working hardware (including SD cards) can be found here.

SanDisk Ultra 16GB Ultra Micro SDHC UHS-I/Class 10 Card with Adapter

Sony 16GB Class 10 UHS-1 Micro SDHC

Note: A known issue with the Raspberry Pi is that the SD card may get corrupted with frequent power cycles, such
as when the system gets plugged and unplugged frequently from an external battery. Most core developers of openaps
recommend purchasing extra SD cards and having them pre-imaged and ready to use with a backup copy of openaps
installed, so you can swap it out on the go for continued use of the system.

WiFi Adapter

A minimalistic, unobtrusive WiFi USB adapter is recommended. The low-profile helps to avoid damage to both the
RPi2 and the adapter as the RPi2 will be transported everywhere with the user.

Edimax EW-7811Un 150Mbps 11n Wi-Fi USB Adapter

Buffalo AirStation N150 Wireless USB Adapter

2.1 Amp USB Battery Power Supply

A large-capacity power supply that is greater than 8000 mAh (milliAmp-hours) is recommended for full day use.
Make sure that the battery has at least one 2.1 Amp USB output. A battery with a form-factor that minimizes size
is recommended, to allow the patient to be as ambulatory as possible. When you have a full OpenAPS implemented
and working, you will want to have multiple batteries to rotate and recharge. A battery that can deliver power while it
charges is ideal as you will be able to charge it on-the-fly without shutting down and restarting the RPi2.

TeckNet® POWER BANK 9000mAh USB External Battery Backup Pack

USB Cables

USB cables with a micro connector on one end and a standard (Type A) connector on the other are used to connect
the power supply and the Dexcom receiver to the RPi2. Most cables will work fine, but some prefer to select lengths
and/or features (such as right-angled connectors) to improve portability.

Rerii Black Golden Plated 15 cm Length Micro-B Male Left Angle USB cable

2.1. Phase 0: General Setup 9

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://elinux.org/RPi_VerifiedPeripherals
http://www.amazon.com/gp/product/B010Q57SEE
http://www.amazon.com/Sony-Class-Memory-SR16UY2A-TQ/dp/B00X1404P8
http://www.amazon.com/Edimax-EW-7811Un-150Mbps-Raspberry-Supports/dp/B003MTTJOY/ref=sr_1_1?ie=UTF8&qid=1432614150&sr=8-1&keywords=edimax
http://www.amazon.com/BUFFALO-AirStation-N150-Wireless-Adapter/dp/B003ZM17RA/ref=sr_1_1?ie=UTF8&qid=1434523524&sr=8-1&keywords=airstation+n150
http://www.amazon.com/gp/product/B00FBD3O2M
http://www.amazon.com/Rerii-Micro-B-Charging-Guarantee-Fulfilled/dp/B00S9WXY5O/

OpenAPS Documentation, Release 0.0.0

Monoprice Premium USB to Micro USB Charge, Sync Cable - 3ft

AAA Batteries

Repeated wireless communication with the pump drains the battery quite quickly. With a loop running every five
minutes, a standard alkaline AAA—recommended by Medtronic—lasts somewhere between four to six days before
the pump goes to a “Low Battery” state and stops allowing wireless transmission. Lithium batteries last significantly
longer but do not give much warning when they are about to die, but alerts can be created to provide warning about
the status of the battery. For further information on batteries, see this study on AAA battery use in a looping pump.

Cases

The Raspberry Pi is extremely minimalistic and does not come in a protective case. This is fine for development work,
but presents an issue for day-to-day use. There are hundreds of cases available, but here some examples of what others
are using in their OpenAPS builds.

JBtek® Jet Black Case for Raspberry Pi B+ & Raspberry Pi 2 Model B

Raspberry Pi B+ /PI2 Acrylic Case

Additionally, for mobile use, it is helpful to have something besides a lunchbox to carry the entire rig around. The
size and weight of the component set as well as the limited range of the CareLink USB stick constrains the options
here, but there are still some workable solutions. Waist-worn running gear and camera cases seem to work well. Two
options: FlipBelt and Lowepro Dashpoint 20.

2.1.4 Setting Up Your Raspberry Pi

Note: Settuping up a Raspberry Pi is not specific to OpenAPS. Therefore, it’s very easy to Google and find other setup
guides and tutorials to help with this process. This is also a good way to get comfortable with using Google if you’re
unfamiliar with some of the command line tools. Trust us - even if you’re an experienced programmer, you’ll be doing
this throughout the setup process.

In order to use the RPi2 with openaps development tools, the RPi2 must have an operating system installed and be
set up in a very specific way. There are two paths to the intial operating system instalation and WiFI setup. Path
1 is recommended for beginners that are very new to using command prompts or “terminal” on the Mac. Path 2 is
considered the most convenient approach for those with more experience with coding and allows the RPi2 to be set
up without the use of cables, which is also known as a headless install. Either path will work and the path you choose
is a matter of personal preference. Either way, it is recommended that you purchase your RPi2 as a CanaKit, which
includes everything you will need for a GUI install.

For the Path 1 GUI install you will need:

• A Raspberry Pi 2 CanaKit or similar, which includes several essential accessories in one package

• USB Keyboard

• USB Mouse

• A TV or other screen with HDMI input

For the Path 2 Headless install, you will need:

• Raspberry Pi 2

• 8 GB micro SD Card [and optional adapter so that you can plug in the micro SD Card into your computer]

• Low Profile USB WiFi Adapter

10 Chapter 2. Walkthrough

http://www.monoprice.com/Product?c_id=103&cp_id=10303&cs_id=1030307&p_id=9763&seq=1&format=2
https://gist.github.com/channemann/0a81661b78703fcb8da6
http://www.amazon.com/gp/product/B00ONOKPHC
http://www.amazon.com/Raspberry-Pi-PI2-Acrylic-Case/dp/B00M9ZW6QU
https://flipbelt.com/
http://store.lowepro.com/dashpoint-20
http://www.amazon.com/CanaKit-Raspberry-Complete-Original-Preloaded/dp/B008XVAVAW/

OpenAPS Documentation, Release 0.0.0

• 2.1 Amp USB Power Supply

• Micro USB cable

• Raspberry Pi 2 CanaKit

• Console cable, ethernet cable, or Windows/Linux PC that can write ext4 filesystems

Download and Install Raspbian Jessie

Note: If you ordered the recommended CanaKit, your SD card will already come imaged. However, if you don’t
already know whether it’s Raspbian 8 Jessie or newer (see below), just treat it as a blank SD card and download and
install the latest versian of Raspbian (currently version 8.0, codename Jessie).

Download Raspbian

Raspbian is the recommended operating system for OpenAPS. Download the latest version (Jessie September 2015 or
newer) of Raspbian here. Make sure to extract the disk .img from the ZIP file. Note that the large size of the Raspbian
Jessie image means its .zip file uses a different format internally, and the built-in unzipping tools in some versions of
Windows and MacOS cannot handle it. The file can be successfully unzipped with [7-Zip] (http://www.7-zip.org/) on
Windows and [The Unarchiver] (https://itunes.apple.com/us/app/the-unarchiver/id425424353?mt=12) on Mac (both
are free).

Write Raspbian to the Micro SD Card

Erase (format) your SD card using https://www.sdcard.org/downloads/formatter_4/

Write the Raspbian .img you extracted from the ZIP file above to the SD card using the instructions at
https://www.raspberrypi.org/documentation/installation/installing-images/

Detailed Windows Instructions

• First, format your card to take advantage of the full size it offers

– If you got your through CanaKit, when you put it in your PC it will look like it is 1GB in size despite
saying it is 8GB

• Download and install: https://www.sdcard.org/downloads/formatter_4/

• Run SDFormatter

– Make sure your Micro SD Card is out of your Raspberry PI (shut it down first) and attached to your
computer

– Choose the drive where your card is and hit “Options”

– Format Type: Change to Full (Erase)

– This will erase your old Rasbian OS and make sure you are using the full SD card’s available memory

2.1. Phase 0: General Setup 11

http://downloads.raspberrypi.org/raspbian_latest

OpenAPS Documentation, Release 0.0.0

–

– Format the card

• Download Rasbian 8 / Jessie

– https://www.raspberrypi.org/downloads/raspbian/

– Extract the IMG file

• Follow the instruction here to write the IMG to your SD card

– https://www.raspberrypi.org/documentation/installation/installing-images/README.md

• After writing to the SD card, safely remove it from your computer and put it back into your RPi2 and power it
up

Connect and configure WiFi

• Insert the included USB WiFI into the RPi2.

• Next, insert the Micro SD Card into the RPi2.

Path 1: Keyboard, Mouse, and HDMI monitor/TV

• First, insert your USB keyboard and USB mouse into the RPi2.

• Next, connect your RPi2 to a monitor or T.V. using the included HDMI cable.

• Finally connect your RPi2 using the power adapter.

• You should see the GUI appear on sceen.

12 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

• Configure WiFi per the instruction pamphlet included with your CanaKit.

• Once you have installed Rasbian and connected to WiFI, you can disconnect the mouse, keyboard and HDMI
cable.

Remember to keep your RPi2 plugged in, just disconnect the peripherals. Also remember to never disconnect your
RPi2 without shutting it down properly using the sudo shutdown -h now command. If you are unable to access
the Pi and must power it off without a shutdown, wait until the green light has stopped flashing (indicating the Pi is no
longer writing to the SD card).

You can now skip to Test SSH Access and SSH into your RPi2.

Path 2: Console or Ethernet cable

• Get and connect a console cable (use this guide),

• Temporarily connect RPi to a router with an ethernet cable and SSH in (see below), or

• Connect the RPi directly to your computer with an ethernet cable (using this guide) and SSH in (see below)

Configure WiFi Settings Once you connect to the Pi, you’ll want to set up your wifi network(s). It is recommended
to add both your home wifi network and your phone’s hotspot network if you want to use OpenAPS on the go.

To configure wifi:

Type sudo bash and hit enter

Input wpa_passphrase "<my_SSID_hotspot>" "<my_hotspot_password>" >>
/etc/wpa_supplicant/wpa_supplicant.conf and hit enter (where <my_SSID_hotspot> is the
name of your phone’s hotspot and <my_hotspot_password> is the password).

(It should look like: wpa_passphrase "OpenAPS hotspot" "123loveOpenAPS4ever" >>
/etc/wpa_supplicant/wpa_supplicant.conf)

Input your home wifi next: wpa_passphrase "<my_SSID_home>" "<my_home_network_password>"
>> /etc/wpa_supplicant/wpa_supplicant.conf (and hit enter)

You can now skip to Test SSH Access and SSH into your RPi2.

Path 3: Headless WiFi configuration (Windows/Linux only)

Keep the SD card in the reader in your computer. In this step, the WiFi interface is going to be configured in Raspbian,
so that we can SSH in to the RPi2 and access the device remotely, such as on a computer or a mobile device via an
SSH client, via the WiFi connection that we configure. Go to the directory where your SD card is with all of the files
for running Raspbian on your RPi2, and open this file in a text editor.

/path/to/sd/card/etc/network/interfaces

Edit the file so it looks like this:

auto lo
iface lo inet loopback
iface eth0 inet dhcp

auto wlan0
allow-hotplug wlan0
iface wlan0 inet dhcp
wpa-ssid <your-network-name>
wpa-psk <your-password>

2.1. Phase 0: General Setup 13

https://learn.adafruit.com/downloads/pdf/adafruits-raspberry-pi-lesson-5-using-a-console-cable.pdf
http://www.interlockroc.org/2012/12/06/raspberry-pi-macgyver/

OpenAPS Documentation, Release 0.0.0

Replace <your-network-name> and <your-password> with your own credentials (just text, no quotes). Save
the file (without adding any additional extensions to the end of the filename).

Alternatively if you want to connect to known networks automatically when roaming lets say your home wifi and your
mobile hotspot you can use the following configuration:

Edit the main network config file and change the WiFi related settings to:

the auto wlan0 below is mandatory
change wlan0 inet to manual
add wpa-roam line
define a number of known network using user defined strings, e.g. mobile, home and also default

auto wlan0
iface wlan0 inet manual

wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface mobile inet dhcp
iface home inet dhcp
iface default inet dhcp

Next edit etc/wpa_supplicant/wpa_supplicant.conf and add the following configuration:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
network={

ssid="YOURMOBILESSID"
scan_ssid=1
key_mgmt=WPA-PSK
psk="YOURMOBILEPASS"
id_str="mobile"
priority=5

}
network={

ssid="YOURHOMESSID"
scan_ssid=1
key_mgmt=WPA-PSK
psk="YOURHOMEPASS"
id_str="home"
priority=5

}

You can add as many network as you need, the next reboot your system will connect to the first available network
listed in your config files. Once the network to which your board is connected becomes unavailable, it start looking
for any other known network in the area, and it connects to it if available.

Boot your Pi. (Put the SD card into the RPi2. Plug in the compatible USB WiFi adapter into a RPi2 USB port. Get
a micro USB cable and plug the micro USB end into the side of the RPi2 and plug the USB side into the USB power
supply.)

If you are unable to access this file on your computer:

• Connect your Pi to your computer with an ethernet cable and boot your Pi

• Log in using PuTTY. The Host Name is raspberrypi.local and the Port is 22. The login is pi and the
password is raspberry.

• Type sudo nano /etc/network/interfaces and edit the file as described above, or follow the OS X
directions below.

14 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

Test SSH Access

Windows

Make sure that the computer is connected to the same WiFi router that the RPi2 is using. Download PuTTY here.
Hostname is pi@raspberrypi.local and default password for the user pi is raspberry. The port should be
set to 22 (by default), and the connection type should be set to SSH. Click Open to initiate the SSH session.

Mac OS X / Linux

Make sure that the computer is connected to the same WiFi router that the RPi2 is using.

Open Terminal and enter this command:

ssh pi@raspberrypi.local

Default password for the user pi is raspberry

iOS

Make sure that the iOS device is connected to the same WiFi network that the RPi2 is using. Download Serverauditor
or Prompt 2 (use this if you have a visual impairment). Hostname is pi@raspberrypi.local and the default
password for the user pi is raspberry. The port should be set to 22 (by default), and the connection type should
be set to SSH.

You probably also want to make your phone a hotspot and configure the WiFi connection (as above) to use the hotspot.

Android

Make sure that the Android device is connected to the same WiFi network that the RPi2 is using. Download an SSH
client in the Google Play store. Hostname is pi@raspberrypi.local and the default password for the user pi is
raspberry. The port should be set to 22 (by default), and the connection type should be set to SSH. You may need
to ssh using the ip address instead; the app “Fing - Network Tools” will tell you what the address is if needed.

You probably also want to make your phone a hotspot and configure the WiFi connection (as above) to use the hotspot.

Note: If connecting to the RPi2 fails at this point, the easiest alternative is to temporarily connect RPi to your router
with an ethernet cable and SSH in, making sure both the computer and the RPi2 are connected to the same router.

Configure the Raspberry Pi

Verify your Raspian Version

• In order to do this, you must have done Path 1 or Path 2 above so that you have an environment to interact with

• Go to the shell / Terminal prompt. If running the GUI, look at the Menu in the upper left and click the icon three
to the right of it (looks like a computer)

• Type lsb_release -a

• If it says anything about Release 8 / Jessie, you have the correct version and can continue.

• If it says anything else, you need to go back to Download and Install Raspbian Jessie

2.1. Phase 0: General Setup 15

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

OpenAPS Documentation, Release 0.0.0

Run raspi-config

Run

sudo raspi-config

to expand filesystem, change user password and set timezone (in internationalization options). This will take effect on
the next reboot, so go ahead and reboot if prompted, or run sudo reboot when you’re ready.

Setup Password-less Login [optional]

We will now setup a public/private key identity, and configure your local computer and the Raspberry Pi to automati-
cally use it, in order to allow convenient future ssh access to the Pi without requiring a password.

Windows

If you don’t already have an SSH key, follow this guide from GitHub to create one.

Create a .ssh directory on the Pi: run mkdir .ssh

Log out by typing exit

and copy your public SSH key into your RPi2 by entering

ssh-copy-id pi@raspberrypi.local

Now you should be able to log in without a password. Try to SSH into the RPi2 again, this time without a password.

Mac and Linux

If you don’t already have an ssh key, then on your local computer (not on the Pi), run ssh-keygen (keep hitting
enter to accept all the defaults).

If you created a new key identity and accepted all of the defaults, then the name of the newly generated identity will
be id_rsa. However, if you set a custom name for the new identity (e.g. id_mypi), then you will need to add it to
your local ssh keyring, via ssh-add ~/.ssh/id_mypi.

Next create a .ssh directory on the Pi: ssh pi@raspberrypi.local, enter the password for the pi user on the
Pi, and run mkdir .ssh.

Next, add your new identity to the list of identities for which the Pi’s pi user grants access via ssh:

cat ~/.ssh/<id_name>.pub | ssh pi@raspberrypi.local ’cat >>
.ssh/authorized_keys’

Instead of appending it to the list of authorized keys, you may simply copy your public key
to the Pi, overwriting its existing list of authorized keys: scp ~/.ssh/<id_name>.pub
pi@raspberrypi.local:~/.ssh/authorized_keys

Finally, ssh pi@raspberrypi.local to make sure you can log in without a password.

Disabling password login [optional]

To secure the Pi, you should either set a password (using sudo raspi-config above, or with sudo passwd),
or disable password login completely. If you want to disable password login (so you can only log in with your ssh
key), open the sshd_config file in nano text editor on the Pi as follows

16 Chapter 2. Walkthrough

https://help.github.com/articles/generating-ssh-keys/

OpenAPS Documentation, Release 0.0.0

sudo nano /etc/ssh/sshd_config

Change the following

PermitRootLogin yes
PasswordAuthentication yes

to

PermitRootLogin no
PasswordAuthentication no

Note that the second line was previously commented out.

From now on you will be able to SSH in with your private SSH key only.

Wifi reliability tweaks [optional]

Many people have reported power issues with the 8192cu wireless chip found in many wifi adapters when used with
the Raspberry Pi. As a workaround, we can disable the power management features (which this chip doesn’t have
anyway) as follows:

sudo bash -c ’echo "options 8192cu rtw_power_mgnt=0 rtw_enusbss=0" >>
/etc/modprobe.d/8192cu.conf’

Watchdog [optional]

Now you can consider installing watchdog, which restarts the RPi2 if it becomes unresponsive.

Enable the built-in hardware watchdog chip on the Raspberry Pi:

sudo modprobe bcm2708_wdog

sudo bash -c ’echo "bcm2708_wdog" >> /etc/modules’

Install the watchdog package, which controls the conditions under which the hardware watchdog restarts the Pi:

sudo apt-get install watchdog

Next, add watchdog to startup applications:

sudo update-rc.d watchdog defaults

Edit the config file by opening up nano text editor

sudo nano /etc/watchdog.conf

Uncomment the following: (remove the # from the following lines, scroll down as needed to find them):

max-load-1
watchdog-device

Finally, start watchdog by entering:

sudo service watchdog start

Update the Raspberry Pi [optional]

Update the RPi2.

sudo apt-get update && sudo apt-get -y upgrade

2.1. Phase 0: General Setup 17

OpenAPS Documentation, Release 0.0.0

The packages will take some time to install.

2.1.5 Setting Up openaps and Dependencies

This section provides information on installing the base openaps toolkit and its dependencies.

Easy install of openaps and dependencies

Using the package manager

This is the recommended way to install:

curl -s https://raw.githubusercontent.com/openaps/docs/master/scripts/quick-packages.sh
| bash -

This uses this script to install all the dependencies in one step.

If the install was successful, the last line will say something like:

openaps 0.0.9 (although the version number may have been incremented)

If you do not see this or see error messages, try running the script multiple times.

Installing from source

It’s possible to use the package manager to install development branches. If you are hacking on the code, you’ll need
a way to develop using versions you control. Here’s a quick way to do that:

curl -s https://raw.githubusercontent.com/openaps/docs/master/scripts/quick-src.sh
| bash -

If successful, the last line will say something like:

openaps 0.0.10-dev (although the version number may have been incremented)

Manual install [optional]

Install Python and Node.js Packages System-Wide [optional]

Run

sudo apt-get install python python-dev python-setuptools python-software-properties
python-numpy python-pip nodejs-legacy npm

This installs a number of packages required by openaps.

Install openaps [optional]

Run

sudo easy_install -ZU setuptools sudo easy_install -ZU openaps

Running this command will also update openaps on your system if a newer version is available.

18 Chapter 2. Walkthrough

https://raw.githubusercontent.com/openaps/docs/master/scripts/quick-packages.sh

OpenAPS Documentation, Release 0.0.0

Install udev-rules [optional]

Run

sudo openaps-install-udev-rules

Enable Tab Completion [optional]

Run

sudo activate-global-python-argcomplete

Set up Git

Run

sudo apt-get install git

In order to set your git account’s default identity, you will need to run the following two commands:

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

replace you@example.com and Your Name with your own information, but keep the quotes.

2.2 Phase 1: Logging, Cleaning, and Analyzing Your Data

2.2.1 Phase 1: Logging, Cleaning, and Analyzing Your Data

Phase 1 focuses on accessing, logging, cleaning up, and analyzing data from the pump and CGM. Data fidelity is
extremely important, especially when dosing is being considered. Take the time to review what the openaps tools are
outputting and carefully compare the logs against your own CareLink and CGM reports.

By the end of this phase, you should have Nightscout set up; have alerts configured to know whether your system is
looping or not; and be analyzing your existing pump or CGM data.

2.2.2 Visualization and Monitoring

Nightscout is the recommended way to visualize your OpenAPS closed loop. Even if you don’t choose to share your
Nightscout instance with another person, it will be helpful for you to visualize what the loop is doing; what it’s been
doing; plus generate helpful reports for understanding your data and also allowing you to customize watchfaces with
your OpenAPS data. This provides a visual alternative to SSHing into your raspberry Pi or loop system and looking
through log files.

Nightscout Integration

The integration requires setting up Nightscout and making changes and additions to your OpenAPS implementation.

2.2. Phase 1: Logging, Cleaning, and Analyzing Your Data 19

http://nightscout.info

OpenAPS Documentation, Release 0.0.0

Nightscout Setup

OpenAPS requires the latest (currently dev) version of Nighthscout, which can be found here:
https://github.com/nightscout/cgm-remote-monitor/tree/dev.

Note: currently there is a bug in the dev version, which doesn’t allow you to set up a new profile using the profile
editor. If you are starting a fresh install of Nightscout, you should first deploy the master version of the code. Once the
master version is up an running, you can create your profile with information on basal rates, etc. After that, you can
deploy the dev version. If you have an existing version of Nightscout, then make sure you create your profile before
moving to the dev version. Or, you may keep your existing Nightscout as is, and start a new Nightscout deployment
(master first, followed by dev), specifically to test OpenAPS integration.

The steps discussed here are essantially the same for both Azure and Heroku users. Two configuration changes must
be made to the Nightscout implementation:

• Add “openaps” (without the quotes) and, optionally, “pump” (without the quotes) to the list of plugins enabled,
and

• Add a new configuration variable DEVICESTATUS_ADVANCED=”true” (without the quotes)

For Azure users, here is what these configuration changes will look like (with just “openaps” added): . For Heroku
users, exactly the same changes should be made on the Config Vars page. The optional “pump” plugin enables
additional pump monitoring pill boxes. For example, assuming you have added “pump” to the list of enabled plugins,
you may add a new configuration variable PUMP_FIELDS=”reservoir battery” to display pump reservoir and battery
status on the Nightscout page. The “pump” plugin offers a number of other options, as documented on the Nightscout
readme page: https://github.com/nightscout/cgm-remote-monitor/blob/dev/README.md#built-inexample-plugins

Next, on your Nightscout website, go to the Settings (3 horizontal bars) in the upper right corner. At the very bottom of
the Settings menu, in the “About” section, you may check the Nightscout version (e.g. version 0.9.0-dev). Just above
is a list of Plugins available. OpenAPS should show up. Click the check box to enable. Similarly, in the case you’ve
enabled the “pump” plugin, “Pump” should also show up in the list, and you may chekc the box to enable. You should
now see the OpenAPS pill box (and any optional pump monitoring pill boxes) on the left side of the Nightscout page
near the time. You may also want to graphically show the basal rates: select “Default” or “Icicle” from the “Render
Basal” pull-down menu in the Settings.

Environment Variables for OpenAPS Access to Nightscout

To be able to upload data, OpenAPS needs to know the URL for your Nightscout website and the hashed version of
your API_SECRET password, which you have entered as one of your Nightscout configuration variables. Two envi-
ronment variables, NIGHTSCOUT_HOST and API_SECRET, are used to store the website address and the password,
respectively.

To obtain the hashed version of the API_SECRET, run the following echo -n "<API_SECRET>" | shasum
and replace <API_SECRET> with what you set up in Nightscout. For example, if your enter echo -n
"password" | shasum, the hashed version returned will be 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8. Run
it with your password and save the hashed key that is output for the next step.

In your terminal window, you may now define the two environment variables. This is done by adding them to your
.profile in your home directory. The .profile runs each time the system starts and will ensure these variables are set for
future use on the command line.

nano ~/.profile and add the following at the end of the file below any other content that may already be there:

NIGHTSCOUT_HOST=https://<your Nightscout address>; export NIGHTSCOUT_HOST
API_SECRET=<your hashed password>; export API_SECRET

Now run source /etc/profile to enact the changes we’ve just made without restart the machine

20 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

Configuring and Uploading OpenAPS Status

Integration with Nightscout requires couple of changes to your OpenAPS implementation, which include:

• Adding a new ns-status device, and generating a new report monitor/upload-status.json, which
consolidates the current OpenAPS status to be uploaded to Nightscout

• Uploading the status report to Nightscount, using the ns-upload command

Upon successful completion of these two steps, you will be able to see the current OpenAPS status by hovering over
the OpenAPS pill box on your Nightscount page, as shown here, for example:

The ns-status is a virtual device in the oref0 system, which consolidates OpenAPS status info in a form suitable
for upload to Nightscout. First, add the device:

$ openaps device add ns-status process --require "clock iob suggested enacted battery reservoir status" ns-status

The corresponding entry in your openaps.ini file should look like this:

[device “ns-status”] fields = clock iob suggested enacted battery reservoir status cmd = ns-status vendor = ope-
naps.vendors.process args =

Then use the ns-status device to add the monitor/upload-status.json report, which you may do as
follows:

$ openaps report add monitor/upload-status.json JSON ns-status shell monitor/clock-zoned.json monitor/iob.json enact/suggested.json enact/enacted.json monitor/battery.json monitor/reservoir.json monitor/status.json

The reports required to generate upload-status.json should look familiar. If you have not generated any of these
required reports, you should set them up and make sure they all work. In particular, note that monitor/clock-zoned.json
contains the current pump clock time stamp, but with the timezone info included. If you have not generated that report
already, you may do so using the following commands, which add a tz virtual device and use it to create clock-
zoned.json starting from clock.json.

$ openaps vendor add openapscontrib.timezones
$ openaps device add tz timezones
$ git add tz.ini
$ openaps report add monitor/clock-zoned.json JSON tz clock monitor/clock.json

At this point, you may want to update your monitor-pump alias to make sure that it produces all the required reports,
so that uploading status to Nightscount can be automated. After you’ve generated a monitor/upload-status.json report,
you can try to manually upload the OpenAPS status to Nightscout using the ns-upload command:

$ ns-upload $NIGHTSCOUT_HOST $API_SECRET devicestatus.json monitor/upload-status.json

If successful, this command will POST the status info to your Nightscout site, and return the content of the Nightscout
devicestatus.json file, which you can examine to see what status information is sent to Nightscout.

Finally, you may define a new alias status-upload, to combine generating the report and uploading the status to
Nightscout:

$ openaps alias add status-upload '! bash -c "openaps report invoke monitor/upload-status.json && ns-upload $NIGHTSCOUT_HOST $API_SECRET devicestatus.json monitor/upload-status.json"'

To test this alias, you may first run your loop manually from command line, then execute openaps
status-upload, examine the output, and check that the new status is visible on the OpenAPS pill box on your
Nightscout page. To automate the status upload each time the loop is executed you can simply add status-upload
to your main OpenAPS loop alias. The OpenAPS pill box will show when the last time your loop ran. If you hover
over it, it will provide critical information that was used in the loop, which will help you understand what the loop is
currently doing.

The OpenAPS pill box has four states, based on what happened in the last 15 minutes: Enacted, Looping, Waiting,
and Warning:

2.2. Phase 1: Logging, Cleaning, and Analyzing Your Data 21

OpenAPS Documentation, Release 0.0.0

• Waiting is when OpenAPS is uploading, but hasn’t seen the pump in a while

• Warning is when there hasn’t been a status upload in the last 15 minutes

• Enacted means OpenAPS has recently enacted the pump

• Looping means OpenAPS is running but has not enacted the pump

Some things to be aware of:

• Make sure that the timezones for the pi (if need be you can use sudo raspi-config to change timezones),
in your monitor/clock-zoned.json report, and the Nightscout website are all in the same time zone.

• The basal changes won’t appear in Nightscout until the second time the loop runs and the corresponding upload
is made.

• You can scroll back in time and at each glucose data point you can see what the critical information was at that
time

Uploading Latest Treatments to Nightscout

In addition to uloading OpenAPS status, it also very beneficial to upload the treatment information from the pump into
Nightscout. This removes the burden of entering this information into Nightscout manually. This can be accomplished
using nightscout command and adding a new upload-recent-treatments alias as follows:

$ openaps alias add latest-ns-treatment-time '! bash -c "nightscout latest-openaps-treatment $NIGHTSCOUT_HOST | json created_at"' || die "Can't add latest-ns-treatment-time"
$ openaps alias add format-latest-nightscout-treatments '! bash -c "nightscout cull-latest-openaps-treatments monitor/pumphistory-zoned.json settings/model.json $(openaps latest-ns-treatment-time) > upload/latest-treatments.json"' || die "Can't add format-latest-nightscout-treatments"
$ openaps alias add upload-recent-treatments '! bash -c "openaps format-latest-nightscout-treatments && test $(json -f upload/latest-treatments.json -a created_at eventType | wc -l) -gt 0 && (ns-upload $NIGHTSCOUT_HOST $API_SECRET treatments.json upload/latest-treatments.json) || echo \"No recent treatments to upload\""' || die "Can't add upload-recent-treatments"

Note that a pumphistory-zoned.json report is required, which can be generated from pumphistory.json using tz,
following the approach described above for clock-zoned.json. After running your loop from command line, you may
try executing openaps upload-recent-treatments manually from command line. Upon successful upload,
the recent treatments will show up automatically on the Nightscount page.

Note: Currently extended boluses are not handled well and depending on the timing of the upload are either missed
entirely or have incorrect information.

As a final step in the OpenAPS and Nightscout integration, you may add status-upload and
upload-recent-treatments to your main loop, and automate the process using cron. Make sure you include
the definitions of the environment variables NIGHTSCOUT_HOST and API_SECRET in the top part of your crontab
file, without export, or quotes:

NIGHTSCOUT_HOST=https://<your Nightscout address>
API_SECRET=<your hashed password>

Setup script

This script may be useful.

2.3 Phase 2: Build a Manual System

2.3.1 Phase 2: Creating an Open Loop

Phase 2 focuses on deploying tools to utilize a suitable algorithm to recommend necessary changes to basal rates.
This is essentially an open-loop system, with you completing the loop by manually calculating what you would do in

22 Chapter 2. Walkthrough

https://github.com/openaps/oref0/commit/d9951683cef1fd6aefc38d2c76ce9e5a177b9aa2

OpenAPS Documentation, Release 0.0.0

that scenario. This can be performed in real time or by using historical data and making retroactive suggestions. Pay
special attention to situations where CGM readings are not smooth (after calibration, with a new sensor, or with errors
such as ???) or when there are issues with data connectivity or fidelity. Assume there will be issues with connectivity.

Note: oref0—short for “OpenAPS Reference Design 0”—is our first (zero-th) implementation of the OpenAPS Refer-
ence Design. It consists of a number of “Lego block” tools that, when combined with the core openaps toolset, create
a full closed loop artificial pancreas system—an OpenAPS implementation.

By this stage, you should have already set up your pump and cgm as openaps devices. You will now add the oref0
tools as virtual devices, create openaps reports for commonly used queries and calculations, and add openaps aliases
that bring together those reports into higher-level activities. Finally, you can combine those into a single command (or
small set of them) that can do everything required to collect data, make a treatment recommendation, and enact it on
the pump. You’ll also build “preflight” and safety checks into the loop.

2.3.2 Configuring and Learning to Use openaps Tools

This section provides an introduction to intializing, configuring, and using the openaps toolset. The purpose is to get
you familiar with how the different commands work and to get you thinking about how they may be used to build your
own closed loop. Make sure you have completed the Setting Up the Raspberry Pi 2 and Setting Up openaps sections
prior to starting.

The openaps readme has detailed information on the installation and usage of openaps. You should take the time to
read through it in detail, even if it seems confusing at first. There are also a number of example uses available in the
openaps-example repository.

Some familiarity with using the terminal will go a long way, so if you aren’t comfortable with what cd and ls do,
take a look at some of the Linux Shell / Terminal links on the Technical page.

Some conventions used in this guide:

• Wherever there are <bracketed_components> in the the code, these are meant for you to insert your own
information. Most of the time, it doesn’t matter what you choose as long as you stay consistent throughout
this guide. That means if you choose Barney as your < my_pump_name >, you must use Barney every
time you see < my_pump_name >. Choose carefully. Do not include the < > brackets in your name.

Note: One helpful thing to do before starting is to log your terminal session. This will allow you to go back and see
what you did at a later date. This will also be immensely helpful if you request help from other OpenAPS contributors
as you will be able to provide an entire history of the commands you used. To enable this, just run $ script <filename>
at the beginning of your session. It will inform you that Script started, file is <filename>. When you are done, simply
$ exit and it will announce Script done, file is <filename>. At that point, you can review the file as necessary.

Configuring openaps

Initialize a new openaps environment

To get started, SSH into your Raspberry Pi. Go to your home directory:

$ cd

Create a new instance of openaps in a new directory:

$ openaps init <my_openaps>

As mentioned above, <my_openaps> can be anything you’d like: myopenaps, awesome-openaps,
openaps4ever, bob, etc.

2.3. Phase 2: Build a Manual System 23

https://github.com/openaps/openaps/blob/master/README.md
https://github.com/bewest/openaps-example

OpenAPS Documentation, Release 0.0.0

Now that it has been created, move into the new openaps directory:

$ cd <my_openaps>

All subsequent openaps commands must be run in this directory. If you try to run an openaps command in a different
directory, you will receive an error:

Not an openaps environment, run: openaps init

The directory you just created and initialized as an openaps environment is mostly empty at the moment, as can been
seen by running the list files command:

$ ls
openaps.ini

That openaps.ini file is the configuration file for this particular instance of openaps. It will contain all of your
device information, plugin information, reports, and aliases. In the subsequent sections, you will be configuring your
openaps instance to add these components. For now, however, it is blank. Go ahead and take a look:

$ cat openaps.ini

Didn’t return much, did it? By the way, that cat command will be very useful as you go through these configuration
steps to quickly check the contents of files (any files, not just openaps.ini). Similarly, if you see a command
that you are unfamiliar with, such as cat or cd, Google it to understand what it does. The same goes for error
messages—you are likely not the first one to encounter whatever error is holding you back.

Add pump as device

In order to communicate with the pump and cgm receiver, they must first be added as devices to the openaps configu-
ration. To do this for the pump:

$ openaps device add <my_pump_name> medtronic <my_serial_number>

Here, <my_pump_name> can be whatever you like, but <my_serial_number> must be the 6-digit serial number
of your pump. You can find this either on the back of the pump or near the bottom of the pump’s status screen, accessed
by hitting the ESC key.

Important: Never share your 6-digit pump serial number and never post it online. If someone had access to this
number, and was in radio reach of your pump, this could be used to communicate with your pump without your
knowledge. While this is a feature when you want to build an OpenAPS, it is a flaw and a security issue if someone
else can do this to you.

Add Dexcom CGM receiver as device

Now you will do this for the Dexcom CGM receiver:

$ openaps device add <my_dexcom_name> dexcom

Note this step is not required if you are using a Medtronic CGM. The pump serves as the receiver and all of the
pumping and glucose functionality are contained in the same openaps device.

Check that the devices are all added properly

$ openaps device show

should return something like:

24 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

medtronic://pump
dexcom://cgms

Here, pump was used for <my_pump_name> and cgms was used for <my_dexcom_name>. The names you
selected should appear in their place.

Your openaps.ini file now has some content; go ahead and take another look:

$ cat openaps.ini

Now, both of your devices are in this configuration file:

[device "pump"]
vendor = openaps.vendors.medtronic
extra = pump.ini

[device "cgms"]
vendor = openaps.vendors.dexcom
extra = cgms.ini

Again, pump was used for <my_pump_name> and cgms was used for <my_dexcom_name>. Your pump model
should also match your pump.

Because your pump’s serial number also serves as its security key, that information is now stored in a separate ini file
(here noted as pump.ini) that was created when you created the pump device. This makes it easier for sharing the
openaps.ini file and also for keeping pump.ini and cgms.ini more secure. Be careful with these files. Open
the pump’s ini file now (use the name reported to you in the line labeled extra in the openaps.ini file).

$ cat pump.ini

It should show something like this:

[device "pump"]
serial = 123456

The serial number should match that of your pump.

If you made a mistake while adding your devices or simply don’t like the name you used, you can go back and remove
the devices as well. For example, to remove the pump:

$ openaps device remove <my_pump_name>

Then, you can add your pump again with a different name or serial number.

Check that you can communicate with your pump

Now that you have added these devices, let’s see if we can establish communication with them. First, the pump:

$ openaps use <my_pump_name> model

should return something like:

"723"

Congratulations, you just pulled data from your pump! The model command is a very useful one to verify whether
you can communicate with the pump. It is not, however, the only thing you can do. Take a look at the help file to see
all of the possibilities:

$ openaps use <my_pump_name> -h

This returns a healthy bit of useful information, including a list of all the commands that can be done with $ openaps
use <my_pump_name>. Of course, each one of those uses has its own help file as well:

2.3. Phase 2: Build a Manual System 25

OpenAPS Documentation, Release 0.0.0

$ openaps use <my_pump_name> model -h
usage: openaps-use pump model [-h]

Get model number

optional arguments:
-h, --help show this help message and exit

The -h argument is your friend. If you ever forget what a command does, what arguments it requires, or what options
it has, -h should be your first resource.

Go ahead and try some more pump uses to find out what they do. Note that some of the commands require additional
inputs; these are detailed in the specific help files.

Check that you can communicate with your Dexcom receiver

Now let’s try communicating with the Dexcom receiver.

Hint: Your Dexcom should be nearly fully charged before plugging it in to your Raspberry Pi. If, when you plug in
your Dexcom, it causes your WiFi dongle to stop blinking, that is a sign that it is drawing too much power and needs
to be charged.

$ openaps use <my_dexcom_name> iter_glucose 1

should return something like:

[
{
"trend_arrow": "FLAT",
"system_time": "2015-08-23T21:45:29",
"display_time": "2015-08-23T13:46:21",
"glucose": 137

}
]

Hint: if this doesn’t work, check to make sure that your Dexcom receiver is plugged into your Raspberry Pi ;-)

Just like with the pump, you can use the -h argument to call the help files. For example:

$ openaps use <my_dexcom_name> iter_glucose -h
usage: openaps-use cgms iter_glucose [-h] [count]

read last <count> glucose records, default 100, eg:

positional arguments:
count Number of glucose records to read.

optional arguments:
-h, --help show this help message and exit

* iter_glucose - read last 100 records

* iter_glucose 2 - read last 2 records

Pulling blood glucose levels from Nightscout

Some people have found it more beneficial to pull blood glucose values from Nightscout rather than directly from the
Dexcom receiver. In order to do that, two steps are needed:

26 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

1. Similar like above, we need to create a device that talks to Nightscout. Add this device called “curl” to your list
of devices in your openaps.ini file:

[device "curl"]

fields =

cmd = bash

vendor = openaps.vendors.process

args = -c "curl -s https://yourwebsite.azurewebsites.net/api/v1/entries.json | json -e 'this.glucose = this.sgv'"

In addition, you need to alter your monitor/glucose.json report to use this device rather than the cgms device you setup
above. The report will look like this in your openaps.ini file:

[report "monitor/glucose.json"]

device = curl

use = shell

reporter = text

Many people will actually setup both ways to pull the blood glucose level and switch between the different devices
depending on their needs. If you are going to pull it directly from Nightscout then you will have to have internet access
for the Raspberry Pi.

Adding and Invoking Reports

At this point, you should be comfortable communicating with your pump and cgm receiver with the openaps use
command. This is great for learning and for experimenting, but it lacks the ability to generate output files. You’ll
notice that running

$ openaps use <my_dexcom_name> iter_glucose 100

prints a lot of data to the terminal. It would be great to save that data somewhere so that it can be used for logging
historical records, performing calculations, and verifying actions. That is what report does.

Generating reports involves two steps: adding the report structures to your openaps configuration and invoking the
reports to produce the desired outcome.

Adding Reports

As an example, let’s suppose you would like to gather the last four hours of records from your pump. With the use
command, that would be:

$ openaps use <my_pump_name> iter_pump_hours 4

This dumps the past four hours of pump records directly to the terminal.

Now, let’s add this as a report instead:

$ openaps report add last_four_pump_hours.json JSON <my_pump_name>
iter_pump_hours 4

If done correctly, the only thing returned in the terminal is:

added pump://JSON/iter_pump_hours/last_four_pump_hours.json

Let’s take a closer look at each section. openaps report add is adding a report to your openaps configuation.
The report name is last_four_pump_hours.json. The format of the report is JSON. The command that will be
used to generate the report is <my_pump_name> iter_pump_hours 4. You will notice that this last section is
identical to what was called above when you printed the output to the terminal window, except there it was done with
the use command. The report is simply running that same command and writing the output to the file you specified
in the format you specified.

2.3. Phase 2: Build a Manual System 27

OpenAPS Documentation, Release 0.0.0

Much like adding devices, this report configuration is saved to your openaps.ini file. You can view all of your
reports there with $ cat openaps.ini or by using $ openaps report show. Similarly, you can remove
reports with $ openaps report remove <report_name>.

Invoking Reports

Adding the report does not actually generate the output file. To do this, you need to invoke the report:

$ openaps report invoke last_four_pump_hours.json

Again, the terminal output will be minimal:

pump://JSON/iter_pump_hours/last_four_pump_hours.json
reporting last_four_pump_hours.json

This time, however, a new file was created. Check and see using $ ls; you should see a file
called last_four_pump_hours.json in your directory. Take a look at the file with $ cat
last_four_pump_hours.json. The file’s contents should look very familiar—the same data that was printed
to ther terminal window when you performed $ openaps use <my_pump_name> iter_pump_hours 4.

Each time you add a new report to your configuration, you should immediately invoke it and check the resulting file.
This means open the file and actually check to make sure the output is what you expect. Don’t assume that it
worked just because you didn’t see an error.

The reports you add are reusable—each time you would like new data, simply invoke the report again and it will
overwrite the output file. If you would like to see when the file was last edited, use the command $ ls -l. This will
help you make sure you are getting up-to-data data.

Go ahead and create (and check) some reports for the the commands you have been using the most.

Aliases

Now that you have some reports added, you may notice that you end up calling some of them in combinations. For
example, you might always want to get your updated pump records and your updated cgm records. To do that, you
would normally run two commands each time:

$ openaps report invoke last_four_pump_hours.json
$ openaps report invoke last_four_cgm_hours.json

For this example, we assume that you have added a second report called last_four_cgm_hours.json that
is similar to the last_four_pump_hours.json we walked through previously, except that it is using your
<my_dexcom_name> device and the iter_glucose_hours command. Go ahead and do that so you can follow
along.

Calling two sequential commands for each update is a bit annoying, but imagine calling five or ten. Luckily, openaps
has a built-in way to group these commands: aliases. Aliases allow generation of single-word commands to invoke a
series of reports. For this example, create an alias called last_four_hours:

$ openaps alias add last_four_hours "report invoke last_four_pump_hours.json
last_four_cgm_hours.json"

Go ahead and execute this command:

$ openaps last_four_hours

You will see that it invokes each of the reports you specified in the order you specified. It prints each step out to the
terminal window, and you will find that the corresponding output files have been created.

28 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

Just like with devices and reports, the alias is now part of your openaps configuration. You can view all of your aliases
with $ cat openaps.ini or by using $ openaps alias show. Similarly, you can remove aliases with $
openaps alias remove <alias_name>.

Aliases will invoke reports and execute logic and shell commands. Aliases are not limited to reports. They can be
nested. For example a top level alias is $ openaps alias1 alias2. alias2 is for example: Run shell “program1 &&
something2 || alias3” (one and two or three). alias3 is for example: $ Openaps report invoke settings/settings.json
settings/bg_targets.json settings/insulin_sensitivities.json settings/basal_profile.json settings/profile.json

Putting the Pieces Together

Take a moment to consider putting these commands to work in the larger context of a closed-loop system. Components
of that system that you might need to add and invoke would be recent glucose data, recent pump history, the time,
battery status, pump settings, carb ratios, the current basal profile, insulin sensitivities, blood glucose targets, and the
status of the pump.

Go ahead and add and invoke reports for these components of a future closed-loop system.

Are there groupings of these reports that you imagine would be called at the same time? For example, in a closed-loop
setup, the pump settings, blood glucose targets, insulin sensitivities, the basal profile, and carb ratios would not need
to be checked as often as the current pump status, battery status, clock, recent blood sugars, and recent pump history.

Take some time to create aliases for groups of reports that would be called at the same time and verify that they
invoke the expected reports. Reports will execute the “use” command. The “use” command is -h anotated. To see the
annotation use this command $ openaps use -h

Backing Up Your openaps Instance

There are numerous ways to back up your system, from making a copy of the entire SD card to copying over individual
files. Here, we will discuss one method of using git to back up just the openaps instance you’ve created. Note that this
will not back up the entire sysem (and all the work you did in Setting Up the Raspberry Pi 2 and Setting Up openaps),
but it will enable you to skip all of the configuration steps above if something happens.

For this backup method, we will take advantage of the fact that your openaps instanace is a git repository. We won’t
go over git here, but take a look at the references on the Resources page to get familiar with the basics. Typically, we
would do this backup using GitHub, since that is where most of the openaps repositories are located and you should
already have an account. However, GitHub only provides free repositories if they are public, and since this repository
has your <my_pump_name>.ini file—and thus your pump’s serial number—in it, we want to make sure that is
private. If you are comfortable with sharing your glucose and pump history publicly, you can make sure the secret
.ini files remain so by creating a .gitignore file listing <my_pump_name>.ini (and any other .ini files with secret
information). This will prevent git from uploading those files to GitHub, but will still allow you to backup and publicly
share all your other configuration and data.

Note: Note Alternatively, you can [purchase a monthly GitHub plan](https://github.com/pricing) and then follow
[these instructions](https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/) if
you’d like to go with GitHub, or use a service like Bitbucket instead.

Bitbucket offers a similar service to GitHub, but permits users to create free private repositories. Go ahead and
sign up and then create a repository. You can call it whatever you like, but make sure that on the “Create a new
repository” setup page you leave the “This is a private repository” box checked. Once created, you will be directed to
a “Repository setup” page. Under the “Command line” section, click on the “I have an existing project” option and
follow the instructions.

2.3. Phase 2: Build a Manual System 29

https://github.com/pricing
https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://bitbucket.org/

OpenAPS Documentation, Release 0.0.0

Once you have completed this step, all of the files in your <my_openaps> directory will be saved in your online
Bitbucket repository. Whenever you would like to update your backup, simply go into your <my_openaps> directory
and $ git push. This process can be automated, but we’ll save that for another day.

2.3.3 Building preflight and other safety checks

Before moving on to consolidating all of these capabilities into a single alias, it is a good idea to add some error
checking.

• There are several potential issues that may adveresely affect operation of the system. For example, RF com-
munication with the pump may be compromised. It has also been observed that the CareLink USB stick may
become unresponsive or “dead”, requiring a reset of the USB ports. Furthermore, in general, the system should
not act on stale data. Let’s look at some approaches you may consider to address these issues.

Ensuring that your openaps implementation can’t act on stale data could be done by deleting all of the report files in
the monitor directory before the reports are refreshed. YOu may simply use rm -f bash command, which removes
file(s), while ignoring cases when the file(s) do not exist. If a refresh fails, the data required for subsequent commands
will be missing, and they will fail to run. For example, here is an alias that runs the required bash commands:

openaps alias add gather '! bash -c "rm -f monitor/*; openaps gather-profile && openaps monitor-cgm && openaps monitor-pump && openaps report invoke monitor/iob.json"'

This example also shows how an alias can be constructed using bash commands. First, all files in monitor directory
are deleted. Then, aliases are executed to generate the required reports. A similar approach can be used to remove any
old suggested.json output before generating a new one, and to check and make sure oref0 is recommending a
temp basal before trying to set one on the pump. You may want to make sure that your enact alias includes these
provisions.

It’s also worthwhile to do a “preflight” check that verifies a pump is in communication range and that the pump stick
is functional before trying anything else. The oref0 mm-stick command can be used to check the status of the MM
CareLink stick. In particular, mm-stick warmup scans the USB port and exits with a zero code on success, and
non-zero otherwise. Therefore,

$ mm-stick warmup || echo FAIL

will output “FAIL” if the stick is unresponsive or disconnected. You may simply disconnect the stick and give this a
try. If the stick is connected but dead, oref0-reset-usb command can be used to reset the USB ports

$ sudo oref0-reset-usb

Beware, this command power cycles all USB ports, so you will temporarily loose connection to a WiFi stick and any
other connected USB device.

Checking for RF connectivity with the pump can be performed by attempting a simple pump command or report and
by examining the output. For example,

$ openaps report invoke monitor/clock.json

returns the current pump time stamp, such as “2016-01-09T10:47:56”, if the system is able to communicate with the
pump, or errors otherwise. Removing previously generated clock.json and checking for presence of “T” in the newly
created clock.json could be used to verify connectivity with the pump.

Collecting all the error checking, a preflight alias could be defined as follows:

$ openaps alias add preflight '! bash -c "rm -f monitor/clock.json && openaps report invoke monitor/clock.json 2>/dev/null && grep -q T monitor/clock.json && echo PREFLIGHT OK || (mm-stick warmup || (sudo oref0-reset-usb && echo PREFLIGHT SLEEP && sleep 120); echo PREFLIGHT FAIL; exit 1)"'

In this preflight example, a wait period of 120 seconds is added using sleep bash command if the USB ports
have been reset in an attempt to revive the MM CareLink stick. This preflight example also shows how bash

30 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

commands can be chained together with the bash && (“and”) or || (“or”) operators to execute different subsequent
commands depending on the output code of a previous command (interpreted as “true” or “false”).

You may experiment using $ openaps preflight under different conditions, e.g. with the CareLink stick con-
nected or not, or with the pump close enough or too far away from the stick.

At this point you are in position to put all the required reports and actions into a single alias.

#Using oref0 Tools

2.3.4 Add the oref0 Virtual Devices

In Phase 1, you added two physical medical devices to openaps—your pump and your cgm. This was done using the
command $ openaps device add and then specifying the device name, type, and parameters. OpenAPS tools
to gather system profile parameters such as pump settings, calculate the current insulin on board (IOB), and determine
if the pump temp basal should be updated or not, are contained in the OpenAPS reference system oref0. Since there is
no physical oref0 device, you are essentially adding it to the openaps environment as a virtual device or plugin.

First, you can add a catch-all oref0 device using

$ openaps device add oref0 process oref0

and then you can be more specific and add individual oref0 processes as virtual devices using the following commands:

$ openaps device add get-profile process --require "settings bg_targets insulin_sensitivities basal_profile max_iob" oref0 get-profile
$ openaps device add calculate-iob process --require "pumphistory profile clock" oref0 calculate-iob
$ openaps device add determine-basal process --require "iob temp_basal glucose profile" oref0 determine-basal

In these commands, --require specifies the arguments required by each of the oref0 processes. Most of the
arguments to the oref0 processes should look familiar to you from your experimentation with openaps tools earlier.
Now it’s time to put together reports that the oref0 processes use as inputs, as well as reports and aliases that invoke
the oref0 processes themselves.

2.3.5 Organizing the reports

It is convenient to group your reports into settings, monitor, and enact directories. The settings directory
holds reports you may not need to refresh as frequently as those in monitor (e.g. BG targets and basal profile, vs.
pump history and calculated IOB). Finally, the enact directory can be used to store recommendations ready to be
reviewed or enacted (sent to the pump). The rest of this section assumes that you have created settings, monitor,
and enact as subdirectories in your openaps directory. The following shell command creates these three directories:

$ mkdir -p settings monitor enact

2.3.6 The get-profile process

The purpose of the get-profile process is to consolidate information from multiple settings reports into a single
JSON file. This makes it easier to pass the relevant settings information to oref0 tools in subsequent steps. Let’s look
at what kind of reports you may want to set up for each of the get-profile process arguments:

• settings outputs a JSON file containing the pump settings:

$ openaps report add settings/settings.json JSON pump read_settings

• bg_targets outputs a JSON file with bg targets collected from the pump:

2.3. Phase 2: Build a Manual System 31

OpenAPS Documentation, Release 0.0.0

$ openaps report add settings/bg_targets.json JSON pump read_bg_targets

• insulin_sensitivities outputs a JSON file with insulin sensitivites obtained from the pump:

$ openaps report add settings/insulin_sensitivities.json JSON pump read_insulin_sensitivies

• basal_profile outputs a JSON file with the basal rates stored on the pump in your basal profile

$ openaps report add settings/basal_profile.json JSON pump read_basal_profile_std

• max_iob is an exception: in contrast to the other settings above, max_iob is not the result of an openaps
report. It’s a JSON file that should contain a single line, such as: {"max_iob": 2}. You can create this file
by hand, or use the oref0-mint-max-iob tool to generate the file. The max_iob variable represents an upper limit
to how much insulin on board oref0 is allowed to contribute by enacting temp basals over a period of time. In
the example above, max_iob equals 2 units of insulin.

Make sure you test invoking each of these reports as you set them up, and review the corresponding JSON files using
cat. Once you have a report for each argument required by get-profile, you can add a profile report:

$ openaps report add settings/profile.json text get-profile shell settings/settings.json settings/bg_targets.json settings/insulin_sensitivities.json settings/basal_profile.json max_iob.json

Note how the profile report uses get-profile virtual device, with all the required inputs provided. At this
point, it’s natural to add an alias that generates all the reports required for get-profile, and then invokes the
profile report that calls get-profile on them:

$ openaps alias add gather-profile "report invoke settings/settings.json settings/bg_targets.json settings/insulin_sensitivities.json settings/basal_profile.json settings/profile.json"

Remember, what you name things is not important - but remembering WHAT you name each thing and using it
consistently throughout is key to saving you a lot of debugging time. Also, note that the name of your report and
the name of the corresponding file created by the report are the same. For example, you invoke a report called
“settings/settings.json” and the results are stored in “settings/settings.json”. The corresponding output file is created
by invoking the report.

2.3.7 The calculate-iob process

This process uses pump history and the result of get-profile to calculate IOB. The IOB is calculated based on
normal boluses and basal rates over past several hours. At this time, extended boluses are not taken into account. The
get-profile arguments, and suggested reports are as follows:

• profile: report for get-profile, as discussed above

• pumphistory stores pump history in a JSON file

$ openaps report add monitor/pumphistory.json JSON pump iter_pump_hours 4

In this example, pump history is over a period of 4 hours. Normally, you would want oref0 to operate based on pump
history over the number of hours at least equal to what you assume is your active insulin time.

• clock outputs the current time stamp from the pump

$ openaps report add monitor/clock.json JSON pump read_clock

You can now add a report for the calculate-iob process:

$ openaps report add monitor/iob.json JSON calculate-iob shell monitor/pumphistory.json settings/profile.json monitor/clock.json

As always, it is a good idea to carefully test and examine the generated reports.

32 Chapter 2. Walkthrough

https://github.com/openaps/oref0/blob/master/bin/oref0-mint-max-iob.sh

OpenAPS Documentation, Release 0.0.0

2.3.8 The determine-basal process

This process uses the IOB computed by calculate-iob, the current temp basal state, CGM history, and the profile
to determine what temp basal to recommend (if any). Its arguments and reports could be setup as follow:

• iob: your report for calculate-iob

• profile: your report for get-profile

• temp_basal reads from pump and outputs the current temp basal state:

$ openaps report add monitor/temp_basal.json JSON pump read_temp_basal

• glucose reads several most recent BG values from CGM and stores them in glucose.json file:

$ openaps report add monitor/glucose.json JSON cgm iter_glucose 5

In this example, glucose.json will contain 5 most recent bg values.

Finally, a report for determine-basal may look like this:

$ openaps report add enact/suggested.json text determine-basal shell monitor/iob.json monitor/temp_basal.json monitor/glucose.json settings/profile.json

The report output is in suggested.json file, which includes a recommendation to be enacted by sending, if necessary, a
new temp basal to the pump, as well as a reason for the recommendation.

If you are using a Minimed CGM (enlite sensors with glucose values read by your pump), you might get this error
message when running this report Could not determine last BG time. That is because times are reported
differently than from the Dexcom receiver and need to be converted first. See the section at the bottom of this page.

2.3.9 Adding aliases

You may want to add a monitor-pump alias to group all the pump-related reports, which should generally be
obtained before running calculate-iob and determine-basal processes:

$ openaps alias add monitor-pump "report invoke monitor/clock.json monitor/temp_basal.json monitor/pumphistory.json monitor/iob.json"

For consistency, you may also want to add a monitor-cgm alias. Even though it’s invoking only a single report,
keeping this consistent with the monitor-pump alias makes the system easier to put together and reason about.

$ openaps alias add monitor-cgm "report invoke monitor/glucose.json"

2.3.10 Checking your reports

At this point you can call

$ openaps report show

and

$ openaps alias show

to list all the reports and aliases you’ve set up so far. You’ll want to ensure that you’ve set up a report for every
argument for every oref0 process and, more importantly, that you understand what each report and process does. This
is an excellent opportunity to make some openaps report invoke calls and to cat the report files, in order to
gain better familiarity with system inputs and outputs.

You can also test the full sequence of aliases and the that which depend on them:

2.3. Phase 2: Build a Manual System 33

OpenAPS Documentation, Release 0.0.0

$ rm -f settings/* monitor/* enact/*
$ openaps gather-profile
$ openaps monitor-pump
$ openaps monitor-cgm
$ openaps report invoke monitor/iob.json
$ openaps report invoke enact/suggested.json

It is particularly important to examine suggested.json, which is the output of the determine-basal process, i.e.
the output of the calculations performed to determine what temp basal rate, if any, should be enacted. Let’s take a look
at some suggested.json examples:

{"temp": "absolute","bg": 89,"tick": -7,"eventualBG": -56,"snoozeBG": 76,"reason": "Eventual BG -56<100, no temp, setting -0.435U/hr","duration": 30,"rate": 0}

In this example, the current temporary basal rate type is “absolute”, which should always be the case. The current
BG values is 89, which dropped from 96 by a “tick” value of -7. “eventualBG” and “snoozeBG” are oref0 variables
projecting ultimate bg values based on the current IOB with or without meal bolus contributions, an average change
in BG over the most recent CGM data in glucose.json, and your insulin sensitivity. The “reason” indicates why the
recommendation is made. In the example shown, “eventualBG” is less than the target BG (100), no temp rate is
currently set, and the temp rate required to bring the eventual BG to target is -0.435U/hr. Unfortunately, we do not
have glucagon available, and the pump is unable to implement a negative temp basal rate. The system recommends
the best it can: set the “rate” to 0 for a “duration” of 30 minutes. In the oref0 algorithm, a new temp basal rate duration
is always set to 30 minutes. Let’s take a look at another example of suggested.json:

{"temp": "absolute","bg": 91,"tick": "+6","eventualBG": -2,"snoozeBG": 65,"reason": "Eventual BG -2<100, but Delta +6 > Exp. Delta -2.3;cancel","duration": 0,"rate": 0}

In this case, the evenatual BG is again less than the target, but BG is increasing (e.g. due to a recent meal). The actual
“tick”, which is also referred to as “Delta”, is larger than the change that would be expected based on the current IOB
and the insulin sensitivity. The system therefore recommends canceling the temp basal rate, which is in general done
by setting “duration” to 0. Finally, consider this example:

{"temp": "absolute","bg": 95,"tick": "+4","eventualBG": 13,"snoozeBG": 67,"reason": "Eventual BG 13<90, but Avg. Delta 4.00 > Exp. Delta -2.9; no temp to cancel"}

which is similar to the previous example except that in this case there is no temp basal rate to cancel. To gain better
understanding of oref0 operation, you may want to also read Understanding oref0-determine-basal recommendations
and spend some time generating and looking through suggested.json and other reports.

2.3.11 Enacting the suggested action

Based on suggested.json, which is the output of the determine-basal oref0 process, the next step is to enact
the suggested action, i.e. to send a new temp rate to the pump, to cancel the current temp rate, or do nothing. The
approach one may follow is to setup an enacted.json report, and a corresponding enact alias. Thinking about
how to setup the enact report and alias, you may consider the following questions:

• Which pump command could be used to enact a new basal temp, if necessary, and what inputs should that
command take? Where should these inputs come from?

• How could a decision be made whether a new basal temp should be sent to the pump or not? What should
enact do in the cases when no new temp basal is suggested?

Once you setup your enact alias, you should plan to experiment by running the required sequence of reports and by
executing the enact alias using $ openaps enact. Plan to test and correct your setup until you are ceratin that
enact works correctly in different situations, including recommendations to update the temp basal, cancel the temp
basal, or do nothing.

34 Chapter 2. Walkthrough

https://openaps.readthedocs.org/en/bewest-dev-w-dana/docs/walkthrough/phase-2/Understand-determine-basal.md.html

OpenAPS Documentation, Release 0.0.0

2.3.12 Cleaning CGM data from Minimed CGM systems

If you are using the Minimed Enlite system, then your report for iter_glucose uses your pump device because
the pump is the source of your CGM data. Unfortunately, the pump reports CGM data a bit differently and so your
glucose.json file needs cleaning to align it with Dexcom CGM data. The simplest way to handle this is with this
excellent plug-in:

https://github.com/loudnate/openaps-glucosetools

After installing glucosetools, add the vendor and device with:

$ openaps vendor add openapscontrib.glucosetools
$ openaps device add glucose glucosetools

Now you can create a report to clean your glucose data like this:

openaps report add monitor/glucoseclean.json JSON glucose clean monitor/glucose.json

And you should then make sure that your enact/suggested.json report uses monitor/glucoseclean.json instead of
monitor/glucose.json. You can add the clean report to your monitor-cgm alias, as long as it comes after the
iter_glucose report.

Note that if you use Nightscout visualization as described later, you can use the built-in tool
mm-format-ns-glucose to help formatting the Minimed glucose data. If you do, run the tool against the
original iter-glucose output (monitor/glucose.json), not the output from glucosetools.

2.3.13 Running an open loop with oref0

To pull all of oref0 together, you could create a “loop” alias that looks something like openaps alias add loop
’! bash -c "openaps monitor-cgm 2>/dev/null && (openaps preflight && openaps
gather && openaps enact) || echo No CGM data."’. If you want to also add some retry logic to try
again if something failed, you could then do something like openaps alias add retry-loop ’! bash
-c "openaps preflight && until(! mm-stick warmup || openaps loop); do sleep
5; done"’.

Once all that is working and tested, you will have a command that can be run manually or on a schedule to collect data
from the pump and cgm, calculate IOB and a temp basal suggestion, and then enact that on the pump.

2.4 Phase 3: Automation

2.4.1 Phase 3: Understanding Your Open Loop

Phase 3 entails understanding what the open loop is recommmending, and why. You should run with an “open loop”
for enough days to decde what your max basal setting should be, and also observe how often you disagree or decide
to counteract what the loop is recommending.

2.4.2 Understanding the output of oref0-determine-basal

The key logic behind any oref0 implementation of OpenAPS lies in the oref0-determine-basal.js code, which is what
takes all of the inputs you’ve collected and makes a temp basal recommendation you can then enact if appropriate.
As such, it is important to understand how determine-basal makes its decisions, and how to interpret its output, so
you can decide for yourself whether the recommendations it is making are appropriate for your situation, or if further
adjustments are required before closing the loop or letting it run unattended.

2.4. Phase 3: Automation 35

OpenAPS Documentation, Release 0.0.0

The recommendation is to run for several days in “open loop” mode, watching the output, in order to decide what your
“max basal” setting should be. Based on how often you disagreed or counteracted what the loop was recommending,
this might influence how you set your max basal.

Summary of inputs

The determine-basal algorithm requires a number of inputs, which are passed in JSON files such as iob.json, cur-
renttemp.json, glucose.json, profile.json, and optionally meal.json. When running oref0-determine-basal.js with the
appropriate inputs, the first thing you’ll see is a summary of all the provided inputs, which might look something like
this:

{"carbs":0,"boluses":0}
{"delta":-2,"glucose":110,"avgdelta":-2.5}
{"duration":0,"rate":0,"temp":"absolute"}
{"iob":0,"activity":0,"bolussnooze":0,"basaliob":0}
{"carbs_hr":28,"max_iob":1,"dia":3,"type":"current","current_basal":1.1,"max_daily_basal":1.3,"max_basal":3,"max_bg":120,"min_bg":115,"carbratio":10,"sens":40}

• The first line is meal.json, which, if provided, allows determine-basal to decide when it is appropriate to enable
Meal Assist.

• The second line is from glucose.json, and represents the most recent BG, the change from the previous BG
(usually 5 minutes earlier), and the average change since 3 data points earlier (usually 15 minutes earlier).

• The third line is the currently running temporary basal. A duration of 0 indicates none is running.

• Fourth is the IOB and insulin activity summary. Insulin activity is used (when multiplied by ISF) to calculate
BGI, which represents how much BG should be rising or falling every 5 minutes based solely on insulin activity.
Basal IOB excludes the IOB effect of boluses, and Bolus Snooze is used in determining how long to avoid
low-temping after a bolus while waiting for any carbs to kick in.

• Fifth is the contents of profile.json, which contains all of the user’s relevant pump settings, as well as their
configured maximum (basal) IOB.

Output

After displaying the summary of all input data, oref0-determine-basal outputs a recommended temp basal JSON,
which includes an explanation of why it’s recommending that. It might look something like this:

{"temp":"absolute","bg":110,"tick":-2,"eventualBG":95,"snoozeBG":95,"mealAssist":"Off: Carbs: 0 Boluses: 0 Target: 117.5 Deviation: -15 BGI: 0","reason":"Eventual BG 95<115, setting -1.15U/hr","duration":30,"rate":0}

In this case, BG is 110, and falling slowly. With zero IOB, you would expect BG to be flat, so the falling BG generates
a “deviation” from what’s expected. In this case, because avgdelta is -2.5 mg/dL, vs. BGI of 0, that avgdelta is
extrapolated out for the next 30 minutes, resulting in a deviation of -30 mg/dL. That is then applied to the current BG
to get an eventualBG of 80. There is no bolussnooze IOB, so snoozeBG is also 80, and because (among other things)
avgdelta is negative, mealAssist remains off. To correct from 80 up to 115 would require a -2.65U/hr temp for 30m,
and since that is impossibly low, determine-basal recommends setting a temp basal to zero and stopping all insulin
delivery for now.

Exploring further

For each different situation, the determine-basal output will be slightly different, but it should always provide a rea-
sonable recommendation and list any temp basal that would be needed to start bringing BG back to target. If you
are unclear on why it is making a particular recommendation, you can explore further by searching lib/determine-
basal/determine-basal.js (the library with the core decision tree logic) for the keywords in the reason field (for example,
“setting” in this case would find a line (rT.reason += ", setting " + rate + "U/hr";) matching the

36 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

output above, and from there you could read up and see what if clauses resulted in making that decision. In this case,
it was because (working backwards) if (snoozeBG > profile.min_bg) was false (so we took the else),
but if (eventualBG < profile.min_bg) was true (with the explanatory comment to tell you that means “if
eventual BG is below target”).

If after reading through the code you are still unclear as to why determine-basal made a given decision (or think it may
be the wrong decision for the situation), please join the #intend-to-bolus channel on Gitter, paste your output and any
other context, and we’ll be happy to discuss with you what it was doing and why, and whether that’s the best thing to
do in that and similar situations.

2.5 Phase 4: Iterate and Improve

2.5.1 Phase 4: Starting to Close the Loop

Phase 4 focuses on creating a schedule to automate the manual system you developed. Again, at this stage testing
is critical and output of the system should be tracked and validated over a series of time, and include thorough edge
case testing as you move from communicating with the pump and CGM to closing the loop. Don’t test overnight until
you are supremely confident in the operation of your system - remembering that you hold responsibility for the setup
and operation of your system. You may want to have someone nearby the first time you run the system overnight, in
addition to setting alarms to test and watch the system.

2.5.2 Using cron to create a schedule for your loop

You should use cron to create a schedule for your loop.

There is not more instructions around this at this time, due to the need for you to be very certain you want to automate
your loop. That being said, there are some examples and many discussions around this step in the Gitter channel. Look
in the web interface and use the search function to see some discussions on this topic, and ask additional questions as
needed as you learn about this step.

2.5.3 Observing the closed loop

After you have created a schedule with cron, your loop will automatically run.

Starting with low glucose suspend mode

You may notice that the loop is only going to temp you til your netIOB (this means the net amount of insulin compared
to your normal basal rates; so if you temp to 0 and your basal is usually 1.3; you will end up with negative netIOB)
returns to 0. This is an important safety feature to help you observe the loop for three days in this mode.

At this stage, if you consistently see net negative insulin amounts at the same time every day (use Nightscout reports
or similar to observe), then you may be over-bolusing for meals and/or your basal rates are too high the 1.5-2 hours
before the low BGs are occurring.

If you observe this, you’ll need to tweak your basals or consider how you bolus for meals - your I:C ratio may be off.

Make sure you check this out before moving to the next stage of tuning the loop.

2.5. Phase 4: Iterate and Improve 37

http://bit.ly/1QpJFk1

OpenAPS Documentation, Release 0.0.0

2.5.4 Troubleshooting the closed loop

If you haven’t read this enough already: the DIY part of this is really important. If you’ve been copying and pasting,
and not understanding what you’re doing up to this point - please stop. That’s dangerous. You should be testing and
validating your work, and asking questions as you go if anything is unclear. (And, if this documentation annoys you
enough, put in a PR as you go through each part to update/improve the documentation to help the next person! We’ve
all been there.) :)

That being said, at this stage, you have both a manual loop and a schedule (using cron) to create an automated loop.
At this point, you’re in the “test and watch” phase. In particular, you should make sure the loop is recommending
and enacting the types of temporary basal rates that you might do manually; and that the communication is working
between the devices.

Additionally, most loopers, after automating their system with cron jobs, begin to think through some of the following
things and run the following tests, including unit tests:

How often should the cron run?

Think about how often you get new BG data and may want to act on it. Or, time how long it takes your loop to run,
and add another minute to that. You probably want to add preflight checks to make sure a loop is not already running
before your next one starts.

What should BG target range be?

In the early testing, the OpenAPS settings may cause your BG to go both high and low.

It’s tempting to set your targets to “perfect” on day one, and start your looping with those values. The problem with this
is that if the algorithm incorrectly gives you too much insulin you don’t have very much room to handle emergencies.

To start off, you should set your glucose target range “high and wide”. Once you can reproducibly get your sugars in
a wider and higher band without going low, you can then slowly reduce the target range to your ideal range.

You should work toward a long-term goal here, rather than trying to do everything on day one.

Additionally, as you think about the lower end of your target range, remember the timing of your insulin activity and
the fact that negative insulin corrections take about the same amount of time to go into effect; thus, you wouldn’t want
your low end of the target range set below 90, for example - otherwise the system will not be able to prevent lows by
reducing the insulin.

What should pump settings be?

You should set your maximum temporary basal limit on your pump to a reasonable value, to try and make sure that
you don’t go low by accident.

To start off, you should think about taking the largest basal rate in your profile and multiply it by a 1.3. Set that as
your maximum temporary basal on the pump.

Once you’re happy things are functioning correctly, you can increase this value to about 2x your basal.

Note that for children especially this can vary a lot based on age, weight, and activity. Err on the side of caution.

What happens if the system gets out of range or gets bad data?

Test the range of the system. What happens if you walk out of range of the Carelink stick? What happens to the
temporary basal rate? What happens with your cron job? What do you need to be aware of? Apply the same set of

38 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

questions and thinking for other scenarios, including if you go out of range of your CGM and/or get ??? or another
CGM error message.

Make sure you understand the limits of the transmitter and these other errors, especially in an overnight situation , and
what the system can and can’t do when you are out of effective range.

As your tests extends from minutes to hours, you’ll want to check at least these scenarios: data corruption, lack of
data, lack of connectivity, and other non-ideal operating conditions.

Unit testing

Additionally, you may want to consider some unit testing. There is a basic unit testing framework in oref0 that you
can use, and add to.

To help with unit test cases:

If you’d like to help out with defining all the desired behaviors in the form of unit test cases:

1. Please clone / checkout [oref0] (https://github.com/openaps/oref0)

2. Type sudo npm install -g mocha and sudo npm install -g should

3. You should then be able to run make (or something like mocha -c
tests/determine-basal.test.js 2>&1 | less -r) from the openaps-js directory to run
all of the existing unit tests

4. As you add additional unit tests, you’ll want to run make again after each one.

How to add more test cases:

We’ll want to cover every section of the code, so if you see a “rT.reason” in bin/oref0-determine-basal.js that doesn’t
have a corresponding “output.reason.should.match” line in an appropriate test in tests/determine-basal.test.js, then
you should figure out what glucose, temp basal, IOB, and profile inputs would get you into that section of the code
(preferably representing what you’re likely to see in a real-world situation), and create a test case to capture those
inputs and the desired outputs. Then run the tests and see if your test passes, and the output looks reasonable. If not,
then modify your test case accordingly, or if you think you’ve found a bug in determine-basal.js, ask on Gitter.

2.6 Phase 5: Tuning the Closed Loop

2.6.1 Phase 5: Tuning the Closed Loop

At this point, you have a closed loop that can run overnight, but it’s been in ‘low glucose suspend mode’. At this stage,
you’ll advance to changing your settings and tuning your targets in incremental steps to find what the right settings are
for you.

2.6.2 Going beyond low glucose suspend mode

You may have noticed that in the previous phase (4), in observing low glucose suspend mode, the loop did not temp
you to get your netIOB above 0.

Once you have spent several days observing the loop in the previous mode and made sure your basals and bolus
strategies are in good shape, you may consider moving to the next step.

2.6. Phase 5: Tuning the Closed Loop 39

OpenAPS Documentation, Release 0.0.0

This means adjusting your max iob amount.

Keep in mind this is one of the key safety features of OpenAPS. You do NOT want this to be a super large amount. The
point of this setting is to ensure that the loop can not excessively high temp you; if you need high temps consistently
to get you to this amount, your baseline basals are off OR you missed a meal bolus OR you are sick OR there is some
other extenuating circumstance; but in all of these cases, they should require manual intervention and you should not
expect the loop to solve for this.

A good rule of thumb is for max iob to be 3 times your highest basal rate.

(This means it should be approximate to your other settings; not an absolute amount that you set without thinking
about it.)

2.6.3 Tuning your targets

After you adjust your max iob and go beyond low glucose suspend mode, run the system overnight under close
observation with the following considerations around targets:

• You should start with high targets and a good safety margin. For example, you might start with your target at
150 to see how the system does.

• Before adjusting your target, you should have at least one night with zero low alarms (in three days) before
considering dropping the max target below 160.

• Each time you adjust your target, it should be no more than 5-10 points at a time, again observing the outcomes
over a few days.

If you are going low overnight for three+ days, your “min” target may need to be raised.

After you tune your targets, min can be set to be equivalent of max. However, when you first start, start with a range
(i.e. 150-160).

2.7 Phase 6: Iterate and Improve the Closed Loop

2.7.1 Phase 6: Iterating on Your Closed Loop

Now that you’re looping, congrats! Make sure you follow these steps - you’re not done yet. You’ll want to let us know
that you are looping, and continue testing.

You in particular may want to test over a 24 hour period in the course of 3 days (doesn’t have to be consecutive) to see
what the system does when you do meal boluses with the system on, if you are interested in looping during the day.

Watching the system over long periods of time will help you continue to tweak how you bolus for meals and adjust
baseline basals.

At this point, you can also investigate some of the in-development advanced features, like meal-assist and auto-
sensitvitiy adjustment. You can also explore some of the hardware pieces in progress, as noted on the hardware page.

2.7.2 So you think you’re looping? Now keep up to date!

If you’ve gone “live” with your loop, congratulations! You’ll probably want to keep a very close eye on the system
and validate the outputs for a while. (For every person, this amount of time varies).

One important final step, in addition to continuing to keep an eye on your system, is letting us know that you are
looping.

40 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

This is important in case there are any major changes to the system that we need to notify you about. One
example where this was necessary is when we switched from 2015 to 2016: the dates were incorrectly reporting as
2000, resulting in incorrect IOB calculations. As a result, we needed to notify current loopers so they could make the
necessary update/upgrade.

After you have looped for three consecutive nights:

So that we can notify you if necessary, please fill out this form if you have been looping for 3+ days. Your information
will not be shared in any way. You can indicate your preferred privacy levels in the form. As an alternative, if you do
not want to input info, please email dana@openaps.org. Again, this is so you can be notified in the case of a major
bug find/fix that needs to be deployed.

2.7.3 Testing during the day

You probably started looping for nighttime; but some people also choose to loop during the day. Here are some things
to think about:

• Run the loop over 24 hours collectively in 3 days (doesn’t have to be consecutive), and simply observe what the
system does when you do meal boluses. You may want to go back to watching determine-basal to see understand
what the loop is doing, and understanding snoozeBG and similar.

• Continue to observe the net basal insulin delivery after one week of looping. See what times of day the system
is consistently leaving you with neg negative amounts of IOB to counteract or prevent low BGs; again, you may
still be overbolusing and/or have basal rates set too high as a baseline.

2.7.4 Advanced features

Once you have several days or weeks of looping during the day and night, you may then want to consider some of the
in-development additional features. See below for a high-level overview; and then see subsequent pages for details
about setting these up. These are NOT turned on by default, and require manual configuration and additional work to
use them.

Meal-assist

If you choose to enable the optional meal-assist feature, then after you give yourself a meal bolus, the system can
high-temp more quickly after a meal bolus IF you enter carbs reliably. So before considering meal-assist, you must be
willing to enter carbs reliably, either through the pump’s bolus wizard, or through the Nightscout Care Portal. If you
don’t want to do that, this feature won’t be usable.

Like all features and steps, you’ll want to carefully enable, test, and observe the outcomes of this feature.

Auto-sensitivity mode

Wouldn’t it be great if the system knew when you were running sensitive or resistant? That’s what we thought, so we
created “auto-sensitivity mode”. If you explicitly configure this additional feature, it will allow the system to analyze
historical data on the go and make adjustments if it recognizes that you are reacting more sensitivite (or conversely,
more resistant) to insulin than usual. It will then make micro adjustments to your basals.

2.7. Phase 6: Iterate and Improve the Closed Loop 41

http://bit.ly/nowlooping

OpenAPS Documentation, Release 0.0.0

2.7.5 Configuring Automatic Sensitivity Mode

For more information review https://github.com/openaps/oref0/issues/58

1. Ensure to get the latest dev branch

cd
cd src
cd oref0
git pull
git checkout dev
sudo npm install -g

Make sure you run the last line to install the tools

1. Next in order to properly execute the new auto-sensitivity module, you need to have at least 24 hour worth of
pump history data and enough bg readings (past 24 hours). In your openaps.ini apply the following changes:

[report "[Your Path]/glucose.json"]
device = cgm
use = iter_glucose
reporter = JSON
count = 288

Note: If using Nightscout add count=288 to your entries.json API call as a querystring parameter For NS it will look
something like this depending on how you implement it (note the ?count=288) that is what you have to add

[device "curl"]
fields =
cmd = bash
vendor = openaps.vendors.process
args = -c "curl -s https://[Your URL]/api/v1/entries.json?count=288 | json -e 'this.glucose = this.sgv'"

If your [glucose.json] does not have enough entries you will see a warning when running your auto-sens.json report
“Error: not enough glucose data to calculate autosens.”

1. After applying the above change you need to add a new device and report as follow:

[device "auto-sens"]
vendor = openaps.vendors.process
extra = auto-sens.ini

and your auto-sens.ini should look like this:

[device "auto-sens"]
fields = glucose pumphistory insulin_sensitivities basal_profile profile
cmd = oref0
args = detect-sensitivity

1. Next create this report

[report "[Your Path]/auto-sens.json"]
profile = [Your Path]/profile.json
use = shell
reporter = text
json_default = True
pumphistory = [Your Path]/pump-history-zoned.json
basal_profile = [Your Path]/active-basal-profile.json
insulin_sensitivities = [Your Path]/insulin-sensitivities.json
glucose = [Your Path]/ns-glucose.json

42 Chapter 2. Walkthrough

OpenAPS Documentation, Release 0.0.0

device = auto-sens
remainder = []

1. Next we need to pass auto-sens.json to oref0-determine-basal.json, in openaps.ini add a new input simillar to
folowing example below:

[device "oref0-determine-basal"]
fields = iob current-temps glucose profile auto-sens meal
cmd = oref0-determine-basal
vendor = openaps.vendors.process
args =

[report "enact/suggested.json"]
profile = [Your Path]/profile.json
use = shell
reporter = text
current-temps = [Your Path]/temp-basal-status.json
device = oref0-determine-basal
iob = [Your Path]/iob.json
glucose = [Your Path]/glucose.json
meal = [Your Path]/meal.json
auto-sens = [Your Path]/auto-sens.json

1. Next you have to make sure you pull 28 hours (24h + DIA) of pump history. Change the hours to 24, so your
pump history report should look like this:

[report "[Your Path]/pump-history.json"]
device = pump
hours = 28
use = iter_pump_hours
reporter = JSON

Note. Your loop should run without auto-sens.json report but if you don’t pass that as an input you will see the
following message while executing oref0-determine-basal.js:

Optional feature Auto Sensitivity not enabled: { [Error: ENOENT: no such file or directory, open ‘online’] errno: -2,
code: ‘ENOENT’, syscall: ‘open’, path: ‘online’ }

Here is an example of running the loop with Auto Sensitivity feature enabled:

Feb 26 22:26:11 raspberrypi openaps-loop: reporting oref0-prepare/mm-normalized.json
Feb 26 22:26:38 raspberrypi openaps-loop: ...
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.51: -0.33, -0.33, 0.22
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.50: -0.33, -0.33, 0.13
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.49: -0.67, -0.36, -0.03
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.48: -0.67, -0.39, -0.11
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.47: -0.67, -0.46, -0.24
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.46: -0.67, -0.50, -0.38
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.45: -1.00, -0.54, -0.42
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.44: -1.24, -0.57, -0.47
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.43: -1.33, -0.58, -0.63
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.42: -1.49, -0.60, -0.67
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.41: -1.67, -0.62, -0.78
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.40: -1.67, -0.65, -0.88
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.39: -1.67, -0.66, -0.95
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.38: -2.00, -0.67, -1.12
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.37: -2.00, -0.68, -1.57
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.36: -2.00, -0.69, -1.67
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.35: -2.33, -0.69, -1.73
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.34: -2.33, -0.70, -1.89

2.7. Phase 6: Iterate and Improve the Closed Loop 43

OpenAPS Documentation, Release 0.0.0

Feb 26 22:26:38 raspberrypi openaps-loop: p=0.33: -2.43, -0.74, -2.03
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.32: -2.67, -0.76, -2.16
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.31: -3.00, -0.77, -2.36
Feb 26 22:26:38 raspberrypi openaps-loop: p=0.30: -3.00, -0.82, -2.55
Feb 26 22:26:38 raspberrypi openaps-loop: Mean deviation: 0.76
Feb 26 22:26:38 raspberrypi openaps-loop: Sensitivity within normal ranges
Feb 26 22:26:38 raspberrypi openaps-loop: Basal adjustment 0.00U/hr
Feb 26 22:26:38 raspberrypi openaps-loop: Ratio: 100%: new ISF: 42.0mg/dL/U
Feb 26 22:26:39 raspberrypi openaps-loop: {"carbs":0,"boluses":0,"mealCOB":10}
Feb 26 22:26:39 raspberrypi openaps-loop: {"ratio":1}
Feb 26 22:26:39 raspberrypi openaps-loop: {"delta":-4,"glucose":129,"avgdelta":-6}
Feb 26 22:26:39 raspberrypi openaps-loop: {"duration":17,"rate":1.125,"temp":"absolute"}
Feb 26 22:26:39 raspberrypi openaps-loop: {"iob":0.089,"activity":0.0119,"bolussnooze":0,"basaliob":0.089,"netbasalinsulin":1.4,"hightempinsulin":1.8}
Feb 26 22:26:39 raspberrypi openaps-loop: {"max_iob":3,"type":"current","dia":3,"current_basal":1.15,"max_daily_basal":1.15,"max_basal":3,"min_bg":100,"max_bg":120,"sens":42,"carb_ratio":10}
Feb 26 22:26:39 raspberrypi openaps-loop: oref0-get-profile://text/shell/oref0-predict/profile.json
Feb 26 22:26:39 raspberrypi openaps-loop: reporting oref0-predict/profile.json
Feb 26 22:26:39 raspberrypi openaps-loop: oref0-calculate-iob://text/shell/oref0-predict/iob.json
Feb 26 22:26:39 raspberrypi openaps-loop: reporting oref0-predict/iob.json
Feb 26 22:26:39 raspberrypi openaps-loop: auto-sens://text/shell/oref0-monitor/auto-sens.json
Feb 26 22:26:39 raspberrypi openaps-loop: reporting oref0-monitor/auto-sens.json
Feb 26 22:26:39 raspberrypi openaps-loop: oref0-determine-basal://text/shell/oref0-predict/oref0.json
Feb 26 22:26:39 raspberrypi openaps-loop: reporting oref0-predict/oref0.json
Feb 26 22:26:42 raspberrypi openaps-loop: {
Feb 26 22:26:42 raspberrypi openaps-loop: "temp": "absolute",
Feb 26 22:26:42 raspberrypi openaps-loop: "bg": 129,
Feb 26 22:26:42 raspberrypi openaps-loop: "tick": -4,
Feb 26 22:26:42 raspberrypi openaps-loop: "eventualBG": 104,
Feb 26 22:26:42 raspberrypi openaps-loop: "snoozeBG": 104,
Feb 26 22:26:42 raspberrypi openaps-loop: "mealAssist": "Off: Carbs: 0 Boluses: 0 Target: 110 Deviation: -21 BGI: -2.5",
Feb 26 22:26:42 raspberrypi openaps-loop: "reason": "Eventual BG 104>100 but Avg. Delta -6.00 < Exp. Delta -2.3, temp 1.125 ~ req 1.15U/hr"
Feb 26 22:26:42 raspberrypi openaps-loop: }
Feb 26 22:26:43 raspberrypi openaps-loop: No recommendation to send

44 Chapter 2. Walkthrough

CHAPTER 3

Resources

3.1 Making your first PR (pull request)

At some point it will be suggested to you that you make a PR. PR is short for pull request. It’s actually not too hard to
do one and it is a great way to contribute. This documentation is here because people like you made PRs.

• The general idea is to make edits and improvements to code or document by making a copy of the repository
you’d like to change.

• Double checking that they your edits look good to you on your copy.

• Make a few notes for what you did so people can understand why you made the change.

• Then do a pull request, which is to ask the administrataors of the repository to pull your changes back into the
dev branch of the main repository.

• At which time they will do a quick review and merge your changes in.

OK, let’s get started. For our example we are going to make an edit to the openaps docs repository.

1. Go to https://github.com/openaps/docs and hit Fork in the upper right to make your own copy of the repository.

2. Github will automatically take you to your copy (notice in the address bar you are now in your own personal
github directory)

3. In the branch drop down on the upper left of the page we are going to select the dev branch, since that is the one
we want to edit.

4. Now we need to find the file we want to edit. Click through the directory structure until you find and are looking
at the content of the file you want to change.

5. Next, press the pencil icon in the upper right next to the trash can icon.

6. Make edits to the file as necessary.

7. Next we want to commit our changes. But first we should note what we changed and why. Be sure to put a one
liner explaining the why of making the changes you did.

8. Commit the changes.

9. Now look and make sure everyting you changed looks like you meant it to (no typos, etc). If any problems, go
back and edit again and save again.

We now have an improved file that we want to be pulled back into the dev repository at https://github.com/openaps/docs

1. Go to https://github.com/openaps/docs

2. Select dev from the branch drop down on the upper left (since that’s where we’d like the changes to go to)

45

OpenAPS Documentation, Release 0.0.0

3. Press the pull request button

4. Set up the the branches you are targeting. The easiest way of thinking about the branch range is this: the base
branch is where you think changes should be applied, the head branch is what you would like to be applied.

5. So choose so the base fork as openaps/docs and then the base as dev. The head fork is going to be /docs and the
base as dev.

6. It should show the list of changes you made. If not, you did something wrong so stop here and ask for help. If
the list looks like your changes then put a note in there to what the overarching reason for the changes are (in
your case you only made one, but you could have made a bunch). Create the PR.

It will now be in a list of PR’s that the team will review and potentially give feedback on before committing to the
main documentation for openaps!

Congrats, you made your first contribution!

PS, your fork will still be sitting on your own personal github account. You can delete it if you are done with it. In the
future, be sure to pull a fresh copy from github.com/openaps/docs before making new edits.

3.2 Technical Resources

These represent a small selection of guides, tutorials, and quick references for some of the tools used to develop and
document OpenAPS.

3.2.1 Raspberry Pi

Raspberry Pi Documentation

Pi Filler, Pi Finder, and Pi Copier

3.2.2 Git and GitHub

Official Git Documentation

Atlassian (BitBucket) Git Tutorials

Code School Interactive Git Introduction

Codecademy Git Course

3.2.3 Linux Shell / Terminal

Learn UNIX in 10 Minutes

Codecademy Command Line Course

Cron How To Guide

3.2.4 Python

Official Python Documentation

Learn Python the Hard Way

Automate the Boring Stuff with Python

46 Chapter 3. Resources

https://www.raspberrypi.org/documentation/
http://ivanx.com/raspberrypi/
https://git-scm.com/doc
https://www.atlassian.com/git/
https://try.github.io/
https://www.codecademy.com/en/courses/learn-git
http://freeengineer.org/learnUNIXin10minutes.html
https://www.codecademy.com/en/courses/learn-the-command-line
https://help.ubuntu.com/community/CronHowto
https://docs.python.org/2/
http://learnpythonthehardway.org/book/index.html
https://automatetheboringstuff.com/

OpenAPS Documentation, Release 0.0.0

Codecademy Python Course

Python 2.7 Quick Reference

NumPy for MATLAB Users

3.2.5 Useful Apps

Fing (Android and Apple): Identify IP address of devices on a network. Useful for finding the IP address of RPi on
new networks.

Hotspot Manager (Android): Itentify IP address of devices on a hotspot. Useful for finding the IP address of RPi on
hotspots.

JuiceSSH (Android): SSH client for Android devices

3.2.6 Markdown & GitBook

Daring Fireball (John Gruber) Markdown Introduction

Macdown: Open-source Markdown editor for OS X

StackEdit: Online Markdown editor

3.3 Troubleshooting

Even those who follow this documentation precisely are bound to end up stuck at some point. This could be due to
something unique to your system, a mistyped command, actions performed out of order, or even a typo in this guide.
This section provides some tools to help diagnose the issue as well as some common errors that have been experienced
and resolved before. If you get stuck, try re-reading the documentation again and after that, share what you’ve been
working on, attempted steps to resolve, and other pertinent details in #intend-to-bolus in Gitter when asking for help
troubleshooting.

3.3.1 Generally useful linux commands

More comprehensive command line references can be found here and here. For the below, since these are basic linux
things, also try using a basic search engine (i.e. Google) to learn more about them and their intended use.

$ ls -alt (List all of the files in the current directory with additional details.)

$ cd (Change directory)

$ pwd (Show the present working directory (your current location within the filesystem).)

$ sudo <command>

$ tail -f /var/log/syslog

$ df -h

$ ifconfig

$ cat <filename> (Display the contents of the file.)

$ nano <filename> (Open and edit the file in the nano text editor.)

$ stat <filename>

3.3. Troubleshooting 47

https://www.codecademy.com/tracks/python
http://rgruet.free.fr/PQR27/PQR2.7.html
http://mathesaurus.sourceforge.net/matlab-numpy.html
http://www.overlooksoft.com/download
https://play.google.com/store/apps/details?id=com.etustudio.android.hotspotmanager&hl=en
https://play.google.com/store/apps/details?id=com.sonelli.juicessh&hl=en
http://daringfireball.net/projects/markdown/
http://macdown.uranusjr.com/
https://stackedit.io/
https://gitter.im/nightscout/intend-to-bolus
http://www.computerworld.com/article/2598082/linux/linux-linux-command-line-cheat-sheet.html
http://www.pixelbeat.org/cmdline.html

OpenAPS Documentation, Release 0.0.0

$ pip freeze

$ sudo reboot

$ sudo shutdown -h now (The correct way to shut down the Raspberry Pi from the command line. Wait for
the green light to stop blinking before removing the power supply.)

$ dmesg (Displays all the kernel output since boot. It’s pretty difficult to read, but sometimes you see things in there
about the wifi getting disconnected and so forth.)

uptime

[add something for decocare raw logging]

3.3.2 Dealing with the CareLink USB Stick

The model command is a quick way to verify whether you can communicate with the pump. Test this with $
openaps use <my_pump_name> model.

If you can’t get a response, it may be a range issue. The range of the CareLink radio is not particularly good, and
orientation matters; see range testing report for more information.

If you still can’t get a response, trying unplugging and replugging the CareLink stick.

Once you’re setting up your loop, you may also want to oref0-reset-usb (oref0-reset-usb.sh) if mm-stick
warmup fails, to reset the USB connection. It can help in some cases of CareLink stick not responding. Just note that
during USB reset you will loose your Wi-Fi connection as well.

3.3.3 Dealing with a corrupted git repository

OpenAPS uses git as the logging mechanism, so it commits report changes on each report invoke. Sometimes, due to
“unexpected” power-offs (battery dying, unplugging, etc.),the git repository gets broken. When it happens you will
receive exceptions when running any report from openaps. As git logging is a safety/security measure, there is no way
of disabling these commits.

To fix a corrupted git repository you can run oref0-fix-git-corruption.sh, it will try to fix the repository,
and in case when repository is definitly broken it copies the remainings in a safe place (tmp) and initializes a new git
repo.

Warning: do not run any openaps commands with sudo in front of it sudo openaps. If you do, your .git permissions
will get messed up. Sudo should only be used when a command needs root permissions, and openaps does not need
that.

3.3.4 Environment variables

If you are getting your BG from Nightscout or you want to upload loop status/resuts to Nightscout,
among other things you’ll need to set 2 environment variabled: NIGHTSCOUT_HOST and API_SECRET.
If you do not set and export these variables you will receive errors while running openaps report
invoke monitor/ns-glucose.json and while executing ns-upload.sh script which is most prob-
ably part of your upload-recent-treatments alias.Make sure your API_SECRET is in hashed for-
mat. Please see this page for details. Additionally, your NIGHTSCOUT_HOST should be in a format like
http://yourname.herokuapp.com (without trailing slash). For the complete visualization guide use this page
from the OopenAPS documentation.

48 Chapter 3. Resources

https://gist.github.com/channemann/0ff376e350d94ccc9f00
https://github.com/openaps/oref0#ns-upload-entries
https://github.com/openaps/docs/blob/master/docs/Automate-system/vizualization.md

OpenAPS Documentation, Release 0.0.0

3.3.5 Common error messages

Don’t have permission, permission not allowed, etc

The command you are running likely needs to be run with root permissions, try the same command again with sudo
in front of it

json: error: input is not JSON

json: error: input is not JSON: Unexpected '<' at line 1, column 1:
<head><title>Document Moved</title></head>

This error usually comes up when you have pulled a file down from Nightscount that was an invalid file. Typcially you
might see this when trying to pull down treatments. Make sure that you have your HOST and API_KEY set correctly
at the top of your cron, in your ~/.profile

3.4 OpenAPS Overview and Project History

In order to relieve the incredible burden of T1D, many research teams and manufacturers have developed and are
testing Artificial Pancreas Systems (APSs) that connect CGMs to insulin pumps and use various algorithms to au-
tomatically adjust insulin dosing (and sometimes dose glucagon, a counter-regulatory hormone) to attempt to mimic
some of the functions of a healthy pancreas, and keep blood sugar levels in a safe range. While quite successful in
clinical trials so far, current APS systems have been in development for many years, and are still likely at least 3 years
away from FDA approval. It is also unclear whether first-generation APS technology will be suitable for, or available
to, all patients, even in rich countries.

To address some of the challenges of daily life with diabetes, and because #WeAreNotWaiting, several people worked
to figure out how to connect up existing FDA-approved medical devices such as the Dexcom G4 CGM and the
Medtronic Minimed insulin pump, using commodity computer / mobile phone hardware and open-source software,
to create a complete closed loop Artificial Pancreas System (APS). The first public example of this was the #DIYPS
closed loop system, created in their spare time by @DanaMLewis and @ScottLeibrand in the fall of 2013 based on
their earlier work to build the #DIYPS remote monitoring and decision assist system. #DIYPS used the Nightscout
project’s uploader to get Dexcom CGM data off the device. #DIYPS was able to become a closed loop with the help of
open-source decoding-carelink project created by @Ben West to communicate with Medtronic insulin pumps, retrieve
data and issue insulin-dosing commands to pumps that support it. #DIYPS was the base system that led to #OpenAPS.

In light of the success of #DIYPS closed loop and other simple APS systems built by individuals, Dana and Scott
decided to further apply the #WeAreNotWaiting ethos to APS research, believing safe and effective APS technology
can be made available more quickly and to more people, rather than just waiting for current APS efforts to complete
clinical trials and be FDA-approved and commercialized through traditional processes.

#OpenAPS is an open reference design for, and will be a reference implementation of, an overnight closed loop APS
system that uses the CGM sensors’ estimate of blood glucose (BG) to automatically adjust basal insulin levels, in order
to keep BG levels inside a safe range overnight and between meals.

#OpenAPS is not intended to be a “set and forget” APS system. To maximize safety, a system designed from OpenAPS
only doses basal insulin. Users still need to bolus for meals as they do today. However, OpenAPS can identify
deviations from predicted blood sugar changes and change basal rates to prevent dangerous drops or rises that deviate
from expected behavior.

After launching in early 2015, there are at least 44 known instances of OpenAPS that are live and running (as of
March 23, 2016), with several others in development and testing phases. For anecdotal experiences from those running
OpenAPS, watch the #OpenAPS hashtag on Twitter and also check out the Resources section for a list of those sharing
their experiences publicly.

3.4. OpenAPS Overview and Project History 49

http://diyps.org
http://diyps.org
http://twitter.com/danamlewis
http://twitter.com/scottleibrand
http://nightscout.info
http://nightscout.info
http://www.github.com/bewest/decoding-carelink
http://twitter.com/bewestisdoing
https://twitter.com/search?f=tweets&vertical=default&q=%23OpenAPS&src=typd
https://openaps.readthedocs.org/en/bewest-dev-w-dana/docs/Resources/resources.md.html

OpenAPS Documentation, Release 0.0.0

In early 2016, progress continues to be made with the iteration of several hardware options, in addition to multiple
new software features.

3.5 Other People, Projects & Tools

3.5.1 People

These people have publicly identified as either supporting or running OpenAPS implementations and are sharing their
experiences publicly. See below links.

Dana Lewis - blogs about personal experience at DIYPS.org and shares on Twitter as @DanaMLewis.

Scott Leibrand - contributes to Dana’s instance of OpenAPS, and is on Twitter as @ScottLeibrand. (Scott and Dana
collectively maintain OpenAPS.org.)

Ali Mazaheri - shares on Twitter as @AliMazaheri

Chris Hannemann - shares on Twitter as @hannemannemann

Nate Racklyeft - shares on Twitter as @LoudNate

Ben West - author of decoding-carelink and much of the openaps toolkit - on Twitter as @bewestisdoing

The following provide links to other related projects as well as commercial artificial pancreas work underway.

3.5.2 APS & Diabetes Data Tools

• #DIYPS (http://diyps.org/) - the project and personal experience that inspired #OpenAPS

• simPancreas (http://bustavo.com/category/simpancreas/) - another DIY closed loop, although not #OpenAPS
related

• NightScout (http://www.nightscout.info/) - a visualization and remote monitoring tool for people with diabetes
using CGM

• xDrip (http://stephenblackwasalreadytaken.github.io/xDrip/) - a DIY combination of a device and a software
application which receives data sent out by a Dexcom G4 CGM transmitter/sensor and displays the glucose
readings on an Android phone

• RileyLink (https://github.com/ps2/rileylink) A custom designed Bluetooth Smart (BLE) to 916MHz module.
It can be used to bridge any BLE capable smartphone to the world of 916Mhz based devices. This project
is focused on talking to Medtronic insulin pumps and sensors. There is also a Gitter channel dedicated to
discussion on the RileyLink here.

• Tidepool (http://tidepool.org/ and https://github.com/tidepool-org) Notably, work on Boston University iLet UI
(https://github.com/tidepool-org/bionicpancreas) and open-source tools for visualization.

• Perceptus (http://perceptus.org) - more data visualization tools

3.6 Commercial APS Efforts

There are currently several commercial closed-loop products in development by old and new companies in the diabetes
treatment space. These include:

• Medtronic MiniMed 640G

• Medtronic MiniMed 670G

50 Chapter 3. Resources

http://DIYPS.org
http://twitter.com/danamlewis
http://twitter.com/scottleibrand
http://openaps.org
http://twitter.com/alimazaheri
http://twitter.com/hannemannemann
http://twitter.com/loudnate
http://twitter.com/bewestisdoing
https://gitter.im/ps2/rileylink
https://www.medtronic-diabetes.com.au/insulin-pumps/640g
http://diatribe.org/drugdevice-name/medtronic-minimed-670g

OpenAPS Documentation, Release 0.0.0

• TypeZero Technologies

• Bigfoot Biomedical

• Boston University’s iLet, formerly known as the “Bionic Pancreas”

3.7 Frequently Asked Questions

3.7.1 What is a Closed Loop?

In general, a “closed loop” system for treatment of diabetes is considered to be one in which insulin dosing “and in
some cases glucagon dosing” is partially or completely automated. This is in contrast to an “open loop” system, where
the user evaluates the inputs and manually instructs the insulin pump to dose a specific amount. In both cases, the goal
is to maintain blood glucose within the desired range through adjusting hormone doses.

There are numerous different types of closed loop systems, ranging from simple basal suspend systems designed to
mitigate extreme hypoglycemia to dual hormone, fully automated systems. The JDRF Artificial Pancreas Project Plan
page provides an overview of the current commercial and academic generation-based approach. Several commercial
systems are currently in development; see Commercial APS Efforts for more information.

#OpenAPS is focused on a single-hormone hybrid closed-loop system. This is a system that uses only insulin (no
glucagon) and still requires user input for mealtime insulin. For background on #OpenAPS, review the #OpenAPS
Reference Design page.

3.7.2 What does an OpenAPS closed loop look like?

While there are numerous variations, this particular setup shows the key components—namely, a continuous glucose
monitor, an insulin pump, a method for communicating with the pump (here, a CareLink USB stick), and a controller
(here, a Raspberry Pi). Also shown is a Pebble watch, which can be used for monitoring the status of the OpenAPS.
Not shown is the power supply (off-screen) and a way to interact with and program the Raspberry Pi, typically a
computer or smartphone.

3.7. Frequently Asked Questions 51

http://www.typezero.com/
http://www.bigfootbiomedical.com/
http://sites.bu.edu/bionicpancreas/
http://jdrf.org/research/treat/artificial-pancreas-project/
http://openaps.org/open-artificial-pancreas-system-openaps-reference-design/
http://openaps.org/open-artificial-pancreas-system-openaps-reference-design/

OpenAPS Documentation, Release 0.0.0

For more details on the exact hardware required to build an OpenAPS, see the Hardware section.

3.8 Glossary

APS - artificial pancreas system. Sometimes also referred to as “AP”

CGM - continuous glucose monitor, a temporary glucose sensor that is injected into your skin (the needle is removed)
for 3-7 days and, with twice a day calibrations, provides BG readings approximately every 5 minutes.

#OpenAPS - stands for Open A(rtificial) P(ancreas) S(ystem). It is an open-source movement to develop an artificial
pancreas using commercial medical devices, a few pieces of inexpensive hardware, and freely-available software. A
full description of the #OpenAPS project can be found at openaps.org. #OpenAPS (with the hashtag) generally refers
to the broad project and open source movement.

OpenAPS - refers to an example build of the system when used without a hashtag (#)

openaps - the core suite of software tools under development by this community for use in an OpenAPS implementa-
tion

Bolus - extra insulin given by a pump, usually to correct for a high BG or for carbohydrates

Basal - baseline insulin level that is pre-programmed into your pump and mimics the insulin your pancreas would give
throughout the day and night

IOB - Insulin On Board, or insulin active in your body. Note that most commercially available pumps calculate IOB
based on bolus activity only. An OpenAPS implementation calculates and refers most often to net IOB, which takes

52 Chapter 3. Resources

OpenAPS Documentation, Release 0.0.0

into account any adjusted (higher or lower) basal rates as well as bolus activity.

DIA - duration of insulin action, or how long the insulin is active in your body. (Ranges 3-6 hours typically)

CR - carb ratio, or carbohydrate ratio - the amount of carbohydrates for one unit of insulin. Example: 1 u of insulin
for 10 carbs

ISF - insulin sensitivity factor - the amount of insulin that drops your BG by a certain amount mg/dl. Example: 1 u of
insulin for 40 mg/dl

NS, or Nightscout - a cloud-based visualization and remote-monitoring tool.

3.8. Glossary 53

OpenAPS Documentation, Release 0.0.0

54 Chapter 3. Resources

CHAPTER 4

Reference

4.1 Manuals

4.1.1 openaps

openaps

Help

usage: openaps [-h] [-c C C] [-C CONFIG] [–version] [command] ...

openaps - openaps: a toolkit for DIY artificial pancreas system

positional arguments: command args

optional arguments: -h, –help show this help message and exit -c C C -C CONFIG, –config CONFIG –version show
program’s version number and exit

Utilities for developing an artificial pancreas system. openaps helps you manage and structure reports for various
devices.

.-. .,-. .-. .--. .-. .,-. .--.
()|)(.-' | |() |)`--.
`-' |`-' `--'' `-`-'`-|`-' `--'

| |
' '

Common workflows:

Getting started:

openaps init - create a new instance of openaps openaps init myopenaps - this creates an instance of openaps in a new
directory, called myopenaps

cd myopenaps - change directory to root of new repo

A valid instance of openaps is a git repo with a file called openaps.ini present.

openaps will track configuration and some status information inside of openaps.ini. If you already have a git repo
which you would like to become a valid openaps environent, in the root of your repo, run:

touch openaps.ini
git add openaps.ini
git commit -avm 'init openaps'

55

OpenAPS Documentation, Release 0.0.0

Now, wth a valid openaps environment, you can register devices for use. A device is implemented by a vendor.
openaps [will] provide a modular, language and process independent environment for creating vendors and devices,
but for now the only two are dexcom and medtronic.

To register devices for use, see: openaps device -h openaps device add [opts...] eg:

register a medtronic device named pump

openaps device add pump medtronic 665455

register a dexcom device named cgm

openaps device add cgm dexcom

Now that devices are known, and we have a variety of commands available. We can explore how to produce reports
by using devices with the openaps use command:

openaps use <device-name> <use-name> [opts]

openaps use commands can only be used after devices have been added to the openaps.ini config using openaps device
add. Eg: openaps use pump -h - show available commands for the device known as “pump” openaps use pump
iter_pump - get last 100 pump history records from the device called pump openaps use cgm -h - show available
commands for the device known as “cgm” openaps use cgm glucose

After experimenting with openaps use commands, users can save reports using the openaps report commands. openaps
report commands map openaps use commands to filenames:

openaps report add <report-name> <report-formatter> <device> <use> [opts]

add a report, saved in a file called pump-history.json, which is
JSON format, from device pump using use iter_pump.
openaps report add pump-history.json JSON pump iter_pump

add a report, saved in a file called glucose.json, which is
JSON format, from device cgm using use glucose.
openaps report add glucose.json JSON cgm glucose

invoke the report to create glucose.json
openaps report invoke glucose.json

invoke the report to create pump-history.json
openaps report invoke pump-history.json

All commands support tab completion, and -h help options to help explore the live help system.

openaps-alias

Help

usage: openaps-alias [-h] {add,remove,show} ...

openaps-alias - manage aliases

optional arguments: -h, –help show this help message and exit

56 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

Alias Menu:

aliases - manage alias configurations

{add,remove,show} Operation add add - add an alias remove remove - remove an alias show show - show all aliases

openaps-dbus

Help

usage: openaps-dbus [-h] [–quit] [–name NAME] [–ini_home INI_HOME] [–create CREATE]

optional arguments: -h, –help show this help message and exit –quit –name NAME –ini_home INI_HOME –create
CREATE

openaps-enact

Help

usage: openaps-enact [-h] [–version] [{temp-basal,bolus,phone,sms,pipe}] [{simulator,static-file,medtronic,dexcom}]
...

Send changes out into the world.

positional arguments: {temp-basal,bolus,phone,sms,pipe} {simulator,static-file,medtronic,dexcom} args

optional arguments: -h, –help show this help message and exit –version show program’s version number and exit

Make a phone call, send SMS/TEXT, send messages to devices and people.

openaps-get

Help

usage: openaps-get [-h] [–version] [{glucose,basals,help,pump}] [{simulator,static-file,medtronic,dexcom}] ...

positional arguments: {glucose,basals,help,pump} {simulator,static-file,medtronic,dexcom} args

optional arguments: -h, –help show this help message and exit –version show program’s version number and exit

openaps-import

Help

usage: openaps-import [-h] [–list] [input]

openaps-import - import openaps configuration Import configuration.

positional arguments: input Read from stdin

optional arguments: -h, –help show this help message and exit –list, -l Just list types

Example workflow:

openaps -C /path/to/another/openaps.ini device show –json ns-upload | openaps import -

4.1. Manuals 57

OpenAPS Documentation, Release 0.0.0

openaps-install-udev-rules

Help

run as root

openaps-report

Help

usage: openaps-report [-h] [–version] {add,remove,show,invoke} ...

openaps-report - configure reports

optional arguments: -h, –help show this help message and exit –version show program’s version number and exit

Reports Menu:

reports - manage report configurations

{add,remove,show,invoke} Operation add add - add a new report configuration remove remove - remove a device
configuration show show - show all reports invoke invoke - generate a report

Manage which devices produce which reports.

Example workflow:

Use the add, remove, show to manage which reports openaps knows about.

The add command adds a new report to the system. The syntax is: add

openaps report add my-results.json json pump basals

This example registers a json output, using the pump basals command, and
stores the result in my-results.json.

The show command will list or give more details about the reports registered with openaps. The syntax is: show
[name]. The default name is ‘*‘ which should list all available reports.

openaps report show

The remove command removes the previously configured report from openaps. The syntax is: remove

openaps report remove my-results.json
This example removes the report "my-results.json" from the openaps
environment.

openaps report invoke basals

openaps-schedule

Help

usage: openaps-schedule [-h] {add,show,remove} ...

openaps-schedules - manage schedules

optional arguments: -h, –help show this help message and exit

58 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

Schedule management:

schedules - manage schedules and triggers

{add,show,remove} Operation add add - add a scheduled event show show - show all schedules remove remove -
remove a schedule

openaps-trigger

Help

usage: openaps-trigger [-h] {add,show,remove,emit,until} ...

openaps-triggers - manage triggers

optional arguments: -h, –help show this help message and exit

Trigger management:

triggers - manage triggers and triggers

{add,show,remove,emit,until} Operation add add - add a managed Trigger show show - show all trigger remove remove
- remove a trigger emit emit - emit a trigger’s events until until - wait until a trigger emits events

openaps-use

Help

usage: openaps-use [-h] [–format {text,json,base,stdout}] [–output OUTPUT] [–version] device ...

openaps-use - use a registered device

optional arguments: -h, –help show this help message and exit –format {text,json,base,stdout} –output OUTPUT
–version show program’s version number and exit

Known Devices Menu: These are the devices openaps knows about:

device Name and description: black Medtronic - openaps driver for Medtronic blue Medtronic - openaps driver for
Medtronic calculate-iob process - a fake vendor to run arbitrary commands cat process - a fake vendor to run arbi-
trary commands cgm Dexcom - openaps driver for dexcom curl process - a fake vendor to run arbitrary commands
determine-basal process - a fake vendor to run arbitrary commands dx-format-oref0-glucose process - a fake vendor
to run arbitrary commands format-latest-nightscout-treatments process - a fake vendor to run arbitrary commands get-
profile process - a fake vendor to run arbitrary commands howdy process - a fake vendor to run arbitrary commands iob
process - a fake vendor to run arbitrary commands latest-treatments process - a fake vendor to run arbitrary commands
mine process - a fake vendor to run arbitrary commands munge mmhistorytools - tools for cleaning, condensing, and
reformatting history data my-agp AGP - calculate agp values given some glucose text newone process - a fake vendor
to run arbitrary commands ns-glucose process - a fake vendor to run arbitrary commands ns-upload process - a fake
vendor to run arbitrary commands oref0 process - a fake vendor to run arbitrary commands plugins Plugins - Commu-
nity maintained plugins to openaps predict predict - tools for predicting glucose trends pump mmeowlink - openaps
driver for cc1111/cc1110 devices share openxshareble - pure python driver to communicate with Dexcom G4+Share
over ble. Allows openaps to use ble to talk to Dexcom G4+Share. tz Timezones - manage timezones in diabetes data
with ease. units Units - units tool for openaps

Once a device is registered in openaps.ini, it can be used.

4.1. Manuals 59

OpenAPS Documentation, Release 0.0.0

openaps-vendor

Help

usage: openaps-vendor [-h] {add,remove,show} ...

openaps-vendor - Manage vendor plugins.

optional arguments: -h, –help show this help message and exit

Vendors Menu:

vendors - manage vendor plugin configurations

{add,remove,show} Operation add Add a new vendor plugin to openaps-environment. remove Remove vendor plugin
from openaps-environment show Show/list vendor plugins

show - lists all known vendors add - add a new vendor remove - remove a vendor

4.1.2 oref0

oref0

Help

Usage: oref0

______ ______ ______ ______ 0
/ | | \ | | | \ | | | |
| | | | | |__| | | |---- | |----
_|__|_/ |_| _\ |_|____ |_|

Valid commands: oref0 env - print information about environment. oref0 pebble oref0 ifttt-notify oref0 get-profile
oref0 calculate-iob oref0 meal oref0 determine-basal oref0 help - this message

oref0-calculate-iob

Help

usage: [‘node’, ‘/usr/local/bin/oref0-calculate-iob’] <pumphistory.json> <profile.json> <clock.json>

oref0-determine-basal

Help

oref0-find-insulin-uses

Help

usage: [‘node’, ‘/usr/local/bin/oref0-find-insulin-uses’] <pumphistory.json> <profile.json>

60 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

oref0-fix-git-corruption

Help

Git repo does not appear to be corrupt.

oref0-get-profile

Help

usage: [‘node’, ‘/usr/local/bin/oref0-get-profile’] <pump_settings.json> <bg_targets.json> <in-
sulin_sensitivities.json> <basal_profile.json> [<max_iob.json>] [<carb_ratios.json>]

oref0-ifttt-notify

Help

Usage: oref0-ifttt-notify <IFTTT_TRIGGER> <NOTIFY_USAGE>

Setup IFTTT Account

You need to create an account and connect to the Maker channel and the notification channel of your choice. I use
pushover as I already had the app and it allows me more control over the notification on my phone.

Create an IF recipe

The trigger is the maker channel. You can customize the notification message if you wish.

Get the event trigger

On the Maker channel there is a “how to trigger” link. Copy and paste the url for the example curl command, be sure
to change the event name field. The URL, something like:

https://maker.ifttt.com/trigger/{event}/with/key/MyKey

You can pass the IFTTT_TRIGGER, which is the trigger URL as the first argument, or define it as an environment
variable in your crontab.

Command line:

oref0-ifttt-notify https://maker.ifttt.com/trigger/{event}/with/key/MyKey

Crontab: IFTTT_TRIGGER=https://maker.ifttt.com/trigger/{event}/with/key/MyKey

By default oref0-ifttt-notify will check that the stick works, and notify the IFTTT_TRIGGER endpoint only if the the
stick fails to check out. If the stick diagnostics indicate the carelink stick is working, oref0-ifttt-notify will run:

openaps use pump model

4.1. Manuals 61

OpenAPS Documentation, Release 0.0.0

You can specify which openaps use command to use in the second argument, or by setting the
IFTTT_NOTIFY_USAGE environment variable in crontab:

Command line, note the quotes, the second term must be passed as single word.

oref0-ifttt-notify https://maker.ifttt.com/trigger/{event}/with/key/MyKey 'pump model'

Crontab:

IFTTT_NOTIFY_USAGE='pump model'

Author: @audiefile

oref0-meal

Help

usage: [‘node’, ‘/usr/local/bin/oref0-meal’] <pumphistory.json> <profile.json> <clock.json> [carbhistory.json]

oref0-mint-max-iob

Help

Usage: oref0-mint-max-iob max_iob <max_iob> [max_iob.json]

oref0-mint-max-iob help - this message Print a perfect max_iob.json.

Examples: $ oref0-mint-max-iob 2 { “max_iob”: 2 }

$ oref0-mint-max-iob 2 foo.json max_iob 2 saved in foo.json bewest@hither:~/src/openaps/oref0$

oref0-normalize-temps

Help

usage: [‘node’, ‘/usr/local/bin/oref0-normalize-temps’] <pumphistory.json>

oref0-pebble

Help

usage: [‘node’, ‘/usr/local/bin/oref0-pebble’] <glucose.json> <iob.json> <current_basal_profile.json> <current-
temp.json> <requestedtemp.json> <enactedtemp.json> [meal.json]

62 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

oref0-raw

Help

oref0-reset-git

Help

oref0-reset-git oref0-reset-git - Wipe out all history, forcibly re-initialzize openaps from scratch.

oref0-reset-usb

Help

oref0-reset-usb oref0-reset-usb - Drop USB stack, rebind the usb kernel modules.

4.1.3 Nightscout

nightscout

Help

Usage: nightscout

• latest-openaps-treatment

• cull-latest-openaps-treatments

• ns-get

• ns-upload

• ns-dedupe-treatments

• ns-status

• ns-upload-entries

ns-dedupe-treatments

Help

Usage: ns-dedupe-treatments –find <NIGHTSCOUT_HOST> - No-op version, find out what delete would do. ns-
dedupe-treatments –list <NIGHTSCOUT_HOST> - list duplicate count per created_at ns-dedupe-treatments delete
<NIGHTSCOUT_HOST> - Delete duplicate entries from <NIGHTSCOUT_HOST>

ns-status

Help

usage: [‘node’, ‘/usr/local/bin/ns-status’] <clock.json> <iob.json> <suggested.json> <enacted.json> <battery.json>
<reservoir.json> <status.json> [mmtune.json]

4.1. Manuals 63

OpenAPS Documentation, Release 0.0.0

ns-upload

Help

ns-upload: missing API_SECRET

ns-upload-entries

Help

ns-upload-entries <entries.json> http://nightscout.host:1337 ns-upload-entries - Upload entries (glucose data) to NS.

4.1.4 mm

mm-bolus.py

Help

usage: mm-bolus.py [-h] [–serial SERIAL] [–port PORT] [–no-op] [–skip-prelude] [–no-rf-prelude] [–skip-postlude]
[-v] [–rf-minutes SESSION_LIFE] [–auto-init] [–init] (–515 | –554 | –strokes STROKES_PER_UNIT) units

mm-bolus.py - Send bolus command to a pump.

positional arguments: units Amount of insulin to bolus.

optional arguments: -h, –help show this help message and exit –serial SERIAL serial number of pump [default:]
–port PORT Path to device [default: scan] –no-op Dry run, don’t do main function –skip-prelude Don’t do the normal
prelude. –no-rf-prelude Do the prelude, but don’t query the pump. –skip-postlude Don’t do the normal postlude.
-v, –verbose Verbosity –rf-minutes SESSION_LIFE How long RF sessions should last –auto-init Send power ctrl to
initialize RF session. –init Send power ctrl to initialize RF session. –515 –554 –strokes STROKES_PER_UNIT

XXX: Be careful please! Units might be wrong. Keep disconnected from pump until you trust it by observing the
right amount first.

mm-decode-history-page.py

Help

usage: mm-decode-history-page.py [-h] [–collate] [–data {glucose,pump}] [–model
{740,751,522,754,554,715,530,551,730,540,722,723,508,523,511,512,515}] [–larger] [–no-larger] [–out OUT]
infile [infile ...]

positional arguments: infile Find dates in this file.

optional arguments: -h, –help show this help message and exit –collate –data {glucose,pump} –model
{740,751,522,754,554,715,530,551,730,540,722,723,508,523,511,512,515} –larger –no-larger –out OUT Write
records here.

64 Chapter 4. Reference

http://nightscout.host:1337

OpenAPS Documentation, Release 0.0.0

mm-format-ns-glucose

Help

mm-format-ns-glucose [–oref0] <medtronic-glucose.json> mm-format-ns-glucose - Format Medtronic glucose data
into something acceptable to Nightscout.

mm-format-ns-profile

Help

mm-format-ns-profile: Format known pump data into Nightscout “profile”.

Profile documents allow Nightscout to establish a common set of settings for therapy, including the type of units used,
the timezone, carb-ratios, active basal profiles, insulin sensitivities, and BG targets. This compiles the separate pump
reports into a single profile document for Nightscout.

Usage: mm-format-ns-profile pump-settings carb-ratios active-basal-profile insulin-sensitivities bg-targets

Examples: bewest@bewest-MacBookPro:~/Documents/openaps$ mm-format-ns-profile monitor/settings.json
monitor/carb-ratios.json monitor/active-basal-profile.json monitor/insulin-sensitivities.json monitor/bg-targets.json

mm-format-ns-pump-history

Help

mm-format-ns-pump-history <medtronic-pump-history.json> mm-format-ns-pump-history - Format Medtronic pump-
history data into something acceptable to Nightscout.

mm-format-ns-treatments

Help

mm-format-ns-treatments <pump-history-zoned.json> <model.json> mm-format-ns-treatments - Format medtronic
history data into Nightscout treatments data.

mm-latest.py

Help

usage: mm-latest.py [-h] [–serial SERIAL] [–port PORT] [–no-op] [–skip-prelude] [–no-rf-prelude] [–skip-postlude]
[-v] [–rf-minutes SESSION_LIFE] [–auto-init] [–init] [–no-clock] [–no-basal] [–no-temp] [–no-reservoir] [–no-status]
[–parser-out PARSED_DATA] [–rtc-out RTC_ARCHIVE] [–reservoir-out RESERVOIR_ARCHIVE] [–settings-
out SETTINGS] [–temp-basal-status-out TEMPBASAL] [–basals-out BASALS] [–status-out STATUS] [–timezone
TIMEZONE] [minutes]

mm-latest.py - Grab latest activity

positional arguments: minutes [default: 30)]

optional arguments: -h, –help show this help message and exit –serial SERIAL serial number of pump [default:]
–port PORT Path to device [default: scan] –no-op Dry run, don’t do main function –skip-prelude Don’t do the normal

4.1. Manuals 65

OpenAPS Documentation, Release 0.0.0

prelude. –no-rf-prelude Do the prelude, but don’t query the pump. –skip-postlude Don’t do the normal postlude.
-v, –verbose Verbosity –rf-minutes SESSION_LIFE How long RF sessions should last –auto-init Send power ctrl to
initialize RF session. –init Send power ctrl to initialize RF session. –no-clock Also report current time on pump.
–no-basal Also report basal rates. –no-temp Also report temp basal rates. –no-reservoir Also report remaining insulin
in reservoir. –no-status Also report current suspend/bolus status. –parser-out PARSED_DATA Put history json in this
file –rtc-out RTC_ARCHIVE Put clock json in this file –reservoir-out RESERVOIR_ARCHIVE Put reservoir json in
this file –settings-out SETTINGS Put settings json in this file –temp-basal-status-out TEMPBASAL Put temp basal
status json in this file –basals-out BASALS Put basal schedules json in this file –status-out STATUS Put status json in
this file –timezone TIMEZONE Timezone to use

Query pump for latest activity.

mm-press-key.py

Help

usage: mm-press-key.py [-h] [–serial SERIAL] [–port PORT] [–no-op] [–skip-prelude] [–no-rf-prelude] [–skip-
postlude] [-v] [–rf-minutes SESSION_LIFE] [–auto-init] [–init] {act,esc,up,down,easy} [{act,esc,up,down,easy} ...]

mm-press-key.py - Simulate presses on the keypad.

positional arguments: {act,esc,up,down,easy} buttons to press [default: None)]

optional arguments: -h, –help show this help message and exit –serial SERIAL serial number of pump [default:]
–port PORT Path to device [default: scan] –no-op Dry run, don’t do main function –skip-prelude Don’t do the normal
prelude. –no-rf-prelude Do the prelude, but don’t query the pump. –skip-postlude Don’t do the normal postlude.
-v, –verbose Verbosity –rf-minutes SESSION_LIFE How long RF sessions should last –auto-init Send power ctrl to
initialize RF session. –init Send power ctrl to initialize RF session.

Press keys on the keypad.

mm-pretty-csv

Help

mm-send-comm.py

Help

usage: mm-send-comm.py [-h] [–serial SERIAL] [–port PORT] [–no-op] [–
skip-prelude] [–no-rf-prelude] [–skip-postlude] [-v] [–rf-minutes SESSION_LIFE] [–
auto-init] [–init] [–prefix-path PREFIX_PATH] [–saveall] [–prefix {BaseCom-
mand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}]
[–postfix {BaseCommand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}]
{sleep,tweak,ManualCommand} ...

mm-send-comm.py - send messages to a compatible MM insulin pump

positional arguments: {sleep,tweak,ManualCommand} Main thing to do between –prefix and–postfix sleep Just sleep
between command sets tweak Tweak a builtin command ManualCommand Customize a command

optional arguments: -h, –help show this help message and exit –serial SERIAL serial number of pump [default:
] –port PORT Path to device [default: scan] –no-op Dry run, don’t do main function –skip-prelude Don’t do the
normal prelude. –no-rf-prelude Do the prelude, but don’t query the pump. –skip-postlude Don’t do the normal
postlude. -v, –verbose Verbosity –rf-minutes SESSION_LIFE How long RF sessions should last –auto-init Send

66 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

power ctrl to initialize RF session. –init Send power ctrl to initialize RF session. –prefix-path PREFIX_PATH Prefix
to store saved files when using –save or –saveall. –saveall Whether or not to save all responses. –prefix {BaseCom-
mand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}
Built-in commands to run before the main one. –postfix {BaseCom-
mand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}
Built-in commands to run after the main one.

This tool is intended to help discover protocol behavior. Under no circumstance is it intended to deliver therapy.

mm-set-rtc.py

Help

usage: mm-set-rtc.py [-h] [–serial SERIAL] [–port PORT] [–no-op] [–skip-prelude] [–no-rf-prelude] [–skip-postlude]
[-v] [–rf-minutes SESSION_LIFE] [–auto-init] [–init] [–rtc-out RTC_ARCHIVE] [–timezone TIMEZONE] –set SET
[–out OUT] {query,set}

mm-set-rtc.py - query or set RTC

positional arguments: {query,set} Set or query pump status [default: query)]

optional arguments: -h, –help show this help message and exit –serial SERIAL serial number of pump [default:]
–port PORT Path to device [default: scan] –no-op Dry run, don’t do main function –skip-prelude Don’t do the normal
prelude. –no-rf-prelude Do the prelude, but don’t query the pump. –skip-postlude Don’t do the normal postlude.
-v, –verbose Verbosity –rf-minutes SESSION_LIFE How long RF sessions should last –auto-init Send power ctrl to
initialize RF session. –init Send power ctrl to initialize RF session. –rtc-out RTC_ARCHIVE Put clock json in this file
–timezone TIMEZONE Timezone to use –set SET Set clock to new value (iso8601) –out OUT Put basal in this file

Set or query RTC.

mm-set-suspend.py

Help

usage: mm-set-suspend.py [-h] [–serial SERIAL] [–port PORT] [–no-op] [–skip-prelude] [–no-rf-prelude] [–skip-
postlude] [-v] [–rf-minutes SESSION_LIFE] [–auto-init] [–init] {query,suspend,resume} [{query,suspend,resume} ...]

mm-set-suspend.py - query or set suspend/resume status

positional arguments: {query,suspend,resume} Set or query pump status [default: query)]

optional arguments: -h, –help show this help message and exit –serial SERIAL serial number of pump [default:]
–port PORT Path to device [default: scan] –no-op Dry run, don’t do main function –skip-prelude Don’t do the normal
prelude. –no-rf-prelude Do the prelude, but don’t query the pump. –skip-postlude Don’t do the normal postlude.
-v, –verbose Verbosity –rf-minutes SESSION_LIFE How long RF sessions should last –auto-init Send power ctrl to
initialize RF session. –init Send power ctrl to initialize RF session.

Pause or resume pump.

mm-stick

Help

Usage: mm-stick [{scan,diagnose,help},...]

4.1. Manuals 67

OpenAPS Documentation, Release 0.0.0

scan - Print the local location of a plugged in stick.
diagnose - Run python -m decocare.stick $(python -m decocare.scan)
warmup - Runs scan and diagnose with no output.

Exits 0 on success, non-zero exit code
otherwise.

insert - Insert usbserial kernel module.
remove - Remove usbserial kernel module.
udev-info - Print udev information about the stick.
list-usb - List usb information about the stick.
reset-usb - Reset entire usb stack. WARNING, be careful.
fail - Always return a failing exit code.
help - This message.

mm-temp-basals.py

Help

usage: mm-temp-basals.py [-h] [–serial SERIAL] [–port PORT] [–no-op] [–skip-prelude] [–no-rf-prelude] [–skip-
postlude] [-v] [–rf-minutes SESSION_LIFE] [–auto-init] [–init] [–duration DURATION] [–rate RATE] [–out OUT]
{query,set,percent}

mm-temp-basals.py - query or set temp basals

positional arguments: {query,set,percent} Set or query pump status [default: query)]

optional arguments: -h, –help show this help message and exit –serial SERIAL serial number of pump [default:]
–port PORT Path to device [default: scan] –no-op Dry run, don’t do main function –skip-prelude Don’t do the normal
prelude. –no-rf-prelude Do the prelude, but don’t query the pump. –skip-postlude Don’t do the normal postlude.
-v, –verbose Verbosity –rf-minutes SESSION_LIFE How long RF sessions should last –auto-init Send power ctrl to
initialize RF session. –init Send power ctrl to initialize RF session. –duration DURATION Duration of temp rate
[default: 0)] –rate RATE Rate of temp basal [default: 0)] –out OUT Put basal in this file

Set or query temp basals.

mmblelink

Help

mmblelink-send.py

Help

usage: mmblelink-send.py [-h] [–serial SERIAL] [–port PORT] [–no-op] [–skip-
prelude] [–no-rf-prelude] [–skip-postlude] [-v] [–rf-minutes SESSION_LIFE] [–auto-
init] [–init] [–rx {0,1,2,0,1,2,PumpTX,PumpRX}] [–tx {0,1,2,0,1,2,PumpTX,PumpRX}] [–
sleep_interval SLEEP_INTERVAL] [–prefix-path PREFIX_PATH] [–saveall] [–prefix {BaseCom-
mand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}]
[–postfix {BaseCommand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}]
MAC {sleep,tweak,ManualCommand} ...

mmblelink adapter to decocare’s SendMsgApp

positional arguments: MAC RileyLink address {sleep,tweak,ManualCommand} Main thing to do between –prefix
and–postfix sleep Just sleep between command sets tweak Tweak a builtin command ManualCommand Customize a
command

68 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

optional arguments: -h, –help show this help message and exit –serial SERIAL serial number of pump
[default:] –port PORT Path to device [default: scan] –no-op Dry run, don’t do main function –skip-
prelude Don’t do the normal prelude. –no-rf-prelude Do the prelude, but don’t query the pump. –
skip-postlude Don’t do the normal postlude. -v, –verbose Verbosity –rf-minutes SESSION_LIFE How
long RF sessions should last –auto-init Send power ctrl to initialize RF session. –init Send power ctrl
to initialize RF session. –rx {0,1,2,0,1,2,PumpTX,PumpRX}, -R {0,1,2,0,1,2,PumpTX,PumpRX} –tx
{0,1,2,0,1,2,PumpTX,PumpRX}, -T {0,1,2,0,1,2,PumpTX,PumpRX} –sleep_interval SLEEP_INTERVAL, -
s SLEEP_INTERVAL Amount to sleep between polling. –prefix-path PREFIX_PATH Prefix to store saved
files when using –save or –saveall. –saveall Whether or not to save all responses. –prefix {BaseCom-
mand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}
Built-in commands to run before the main one. –postfix {BaseCom-
mand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}
Built-in commands to run after the main one.

mmcli

Help

Usage: mmcli [OPTION...] - Control and monitor the ModemManager

Help Options: -h, –help Show help options –help-all Show all help options –help-manager Show manager options
–help-common Show common options –help-modem Show modem options –help-3gpp Show 3GPP related options
–help-cdma Show CDMA related options –help-simple Show Simple options –help-location Show Location options
–help-messaging Show Messaging options –help-time Show Time options –help-firmware Show Firmware options
–help-sim Show SIM options –help-bearer Show bearer options –help-sms Show SMS options

Application Options: -v, –verbose Run action with verbose logs -V, –version Print version -a, –async Use asynchronous
methods –timeout=[SECONDS] Timeout for the operation

mmeowlink-send.py

Help

usage: mmeowlink-send.py [-h] [–serial SERIAL] [–port PORT] [–no-op] [–skip-prelude] [–no-rf-
prelude] [–skip-postlude] [-v] [–rf-minutes SESSION_LIFE] [–auto-init] [–init] [–radio_type {mmcomman-
der,subg_rfspy}] [–mmcommander] [–subg_rfspy] [–prefix-path PREFIX_PATH] [–saveall] [–prefix {BaseCom-
mand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}]
[–postfix {BaseCommand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}]
{sleep,tweak,ManualCommand} ...

mmeowlink adapter to decocare’s SendMsgApp

positional arguments: {sleep,tweak,ManualCommand} Main thing to do between –prefix and–postfix sleep Just sleep
between command sets tweak Tweak a builtin command ManualCommand Customize a command

optional arguments: -h, –help show this help message and exit –serial SERIAL serial number of pump [de-
fault:] –port PORT Path to device [default: scan] –no-op Dry run, don’t do main function –skip-prelude
Don’t do the normal prelude. –no-rf-prelude Do the prelude, but don’t query the pump. –skip-postlude Don’t
do the normal postlude. -v, –verbose Verbosity –rf-minutes SESSION_LIFE How long RF sessions should
last –auto-init Send power ctrl to initialize RF session. –init Send power ctrl to initialize RF session. –
radio_type {mmcommander,subg_rfspy} –mmcommander –subg_rfspy –prefix-path PREFIX_PATH Prefix to
store saved files when using –save or –saveall. –saveall Whether or not to save all responses. –prefix {BaseCom-
mand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}

4.1. Manuals 69

OpenAPS Documentation, Release 0.0.0

Built-in commands to run before the main one. –postfix {BaseCom-
mand,Bolus,Experiment_OP161,Experiment_OP162,FilterGlucoseHistory,FilterHistory,FilterISIGHistory,GuardianSensorAlarmSilence,GuardianSensorDemoGraphTimeout,GuardianSensorRateChangeAlerts,GuardianSensorSettings,GuardianSensorSettings,KeypadPush,ManualCommand,Model511_ExperimentOP125,Model511_ExperimentOP126,Model511_Experiment_OP119,Model511_Experiment_OP120,Model511_Experiment_OP121,Model511_Experiment_OP122,Model511_Experiment_OP123,Model511_Experiment_OP124,Model511_Experiment_OP125,Model511_Experiment_OP126,Model511_Experiment_OP127,Model511_Experiment_OP128,Model511_Experiment_OP129,Model511_Experiment_OP130,Model511_Experiment_OP165,Model512Experiment_OP150,PowerControl,PowerControlOff,PumpCommand,PumpDisableDetailTrace,PumpEnableDetailTrace,PumpExperiment_OP69,PumpExperiment_OP70,PumpExperiment_OP71,PumpExperiment_OP72,PumpExperiment_OP73,PumpExperiment_OP75,PumpResume,PumpSuspend,PumpTraceSelect,PushACT,PushDOWN,PushEASY,PushESC,PushUP,Read128KMem,Read256KMem,ReadAlarms,ReadBGAlarmCLocks,ReadBGAlarmEnable,ReadBGReminderEnable,ReadBGTargets,ReadBGTargets515,ReadBGUnits,ReadBasalTemp,ReadBasalTemp508,ReadBatteryStatus,ReadBolusHistory,ReadBolusReminderEnable,ReadBolusReminders,ReadBolusWizardSetupStatus,ReadCalibrationFactor,ReadCarbRatios,ReadCarbRatios512,ReadCarbUnits,ReadContrast,ReadCurGlucosePageNumber,ReadCurPageNumber,ReadDailyTotals,ReadDetailTrace,ReadErrorStatus,ReadErrorStatus508,ReadFactoryParameters,ReadFirmwareVersion,ReadGlucoseHistory,ReadHistoryData,ReadISIGHistory,ReadInsulinSensitivities,ReadLanguage,ReadLogicLinkIDS,ReadNewTraceAlarm,ReadOldTraceAlarm,ReadOtherDevicesIDS,ReadPrimeBoluses,ReadProfileSets,ReadProfile_A512,ReadProfile_B512,ReadProfile_STD512,ReadProfiles511_A,ReadProfiles511_B,ReadProfiles511_STD,ReadPumpID,ReadPumpModel,ReadPumpState,ReadPumpStatus,ReadPumpTrace,ReadRTC,ReadRadioCtrlACL,ReadRemainingInsulin,ReadRemainingInsulin523,ReadRemoteControlID,ReadReservoirWarning,ReadSavedSettingsDate,ReadSensorHistoryData,ReadSensorSettings,ReadSettings,ReadSettings511,ReadSettings512,ReadSettings523,ReadTodayTotals508,ReadTotalsToday,ReadUserEvents,ReadVCNTRHistory,SelectBasalProfile,SelectBasalProfileA,SelectBasalProfileB,SelectBasalProfileSTD,SetAutoOff,SetBasalType,SetEnabledEasyBolus,SetSuspend,TempBasal,TempBasalPercent,WriteGlucoseHistoryTimestamp}
Built-in commands to run after the main one.

mmtune.py

Help

Usage: mmtune.py /dev/ttyMFD1 pumpserial [radio_locale] Radio locale defaults to ‘US’. Set to ‘WW’ for other
countries

For command line tools.

4.2 API

4.2.1 API Reference

openaps

openaps

openaps package

Subpackages

openaps.alias package

Submodules

openaps.alias.add module add - add an alias

openaps.alias.add.configure_app(app, parser)

openaps.alias.add.main(args, app)

openaps.alias.alias module
class openaps.alias.alias.Alias(name=None, command=None, **kwds)

Bases: openaps.configurable.Configurable

classmethod FromConfig(klass, config)

fields = {}

name = None

optional = []

prefix = ‘alias’

remove(config)

required = [’command’]

70 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

section_name()

store(config)

url_template = ‘{name:s} {command:s}’

openaps.alias.remove module remove - remove an alias

openaps.alias.remove.main(args, app)

openaps.alias.show module show - show all aliases

openaps.alias.show.configure_app(app, parser)

openaps.alias.show.main(args, app)

Module contents
class openaps.alias.AliasAction(method=None, parent=None)

Bases: openaps.cli.subcommand.Subcommand

setup_application()
class openaps.alias.AliasManagement(parent)

Bases: openaps.cli.commandmapapp.CommandMapApp

aliases - manage alias configurations

Subcommand
alias of AliasAction

get_commands()

get_dest()

name = ‘action’

title = ‘## Alias Menu’

openaps.alias.get_alias_map(conf)

openaps.cli package

Submodules

openaps.cli.commandmapapp module
class openaps.cli.commandmapapp.CommandMapApp(parent)

Bases: object

class Subcommand(method=None, parent=None)
Bases: object

configure_parser(parser)

configure_subparser(subparser)

formatter_class
alias of RawDescriptionHelpFormatter

get_description()

4.2. API 71

OpenAPS Documentation, Release 0.0.0

get_epilog()

get_help()

setup_application()
Allows us to use method, injected as dependency earlier to set up argparser before autocomple-
tion/running the app.

CommandMapApp.commands = {}

CommandMapApp.configure_commands(parser)

CommandMapApp.get(name)

CommandMapApp.get_commands()

CommandMapApp.get_description()

CommandMapApp.get_dest()

CommandMapApp.get_help()

CommandMapApp.get_metavar()

CommandMapApp.get_title()

CommandMapApp.makeSubcommand(ctx)

CommandMapApp.metavar = None

CommandMapApp.selected(args)

openaps.cli.helpers module
openaps.cli.helpers.format_ini(report)
openaps.cli.helpers.format_json(report)

openaps.cli.helpers.format_url(report)

openaps.cli.helpers.install_show_arguments(parser)

openaps.cli.subcommand module
class openaps.cli.subcommand.Subcommand(method=None, parent=None)

Bases: object

configure_parser(parser)

configure_subparser(subparser)

formatter_class
alias of RawDescriptionHelpFormatter

get_description()

get_epilog()

get_help()

setup_application()
Allows us to use method, injected as dependency earlier to set up argparser before autocompletion/running
the app.

72 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

Module contents
class openaps.cli.Base(args)

Bases: object

always_complete_options = True

configure_parser(parser)

epilog()

prep_parser()

prolog()

run(args)
class openaps.cli.ConfigApp(args)

Bases: openaps.cli.Base

create_git_commit()

epilog()

git_repo()

prolog()

read_config()

openaps.devices package

Submodules

openaps.devices.add module add - add a new device configuration

openaps.devices.add.configure_app(app, parser)

openaps.devices.add.configure_parser(parser)

openaps.devices.add.main(args, app)

openaps.devices.device module
class openaps.devices.device.Device(name, vendor)

Bases: openaps.configurable.Configurable

classmethod FromConfig(klass, vendors, config)

classmethod FromImport(klass, candidate, config=None)

format_url()

get(k, *args)

optional = []

prefix = ‘device’

read(args=None, config=None)

register_uses(uses)

required = [’name’, ‘vendor’]

store(config)

4.2. API 73

OpenAPS Documentation, Release 0.0.0

vendor = None
class openaps.devices.device.ExtraConfig(name, **kwargs)

Bases: openaps.configurable.Configurable

prefix = ‘device’

openaps.devices.remove module remove - remove a device configuration

openaps.devices.remove.main(args, app)

openaps.devices.show module show - show all devices

openaps.devices.show.configure_app(app, parser)

openaps.devices.show.main(args, app)

Module contents
class openaps.devices.DeviceConfig(method=None, parent=None)

Bases: openaps.cli.subcommand.Subcommand

setup_application()
openaps.devices.configure_commands(parser, parent=None)

openaps.devices.get_device_map(conf)

openaps.devices.get_device_names(conf)

openaps.devices.get_devices(conf)

openaps.devices.setup_application(app, parser)

openaps.glucose package

Submodules

openaps.glucose.convert module
class openaps.glucose.convert.Convert

Bases: object

How to convert from mg/dL (World Wide format) to mmol/L (mostly UK and ex-UK colonies)

Please note that rounding of these values is a view related function, and should happen at the very last point
before data is being viewed, not here. See http://physics.stackexchange.com/a/63330

This code could be used for mathematical processing of results by someone down the line, so we take pain to
avoid throwing away potentially significant data by rounding.

MMOLL_CONVERT_FACTOR = 18.0

classmethod mg_dl_to_mmol_l(klass, mg_dl)

classmethod mmol_l_to_mg_dl(klass, mmol_l)

74 Chapter 4. Reference

http://physics.stackexchange.com/a/63330

OpenAPS Documentation, Release 0.0.0

openaps.glucose.display module
class openaps.glucose.display.Display

Bases: object

Round Glucose values for display, so that they are consistent in all OpenAPS apps

Example:

from openaps.glucose.display import Display print(Display.display(‘mmol/L’, 5.5))
print(Display.display(‘mg/dL’, 100))

classmethod display(klass, unit, val)

Module contents

openaps.reports package

Subpackages

openaps.reports.reporters package

Submodules

openaps.reports.reporters.JSON module
openaps.reports.reporters.JSON.date_handler(obj)
openaps.reports.reporters.JSON.serialize(blob, reporter)

openaps.reports.reporters.base module
openaps.reports.reporters.base.serialize(blob, reporter)

openaps.reports.reporters.stdout module
openaps.reports.reporters.stdout.close_output_stream(reporter)
openaps.reports.reporters.stdout.get_output_stream(reporter)

openaps.reports.reporters.stdout.serialize(blob, reporter)

openaps.reports.reporters.text module
openaps.reports.reporters.text.serialize(blob, reporter)

Module contents
class openaps.reports.reporters.Reporter(report, device, task)

Bases: object

close()

no_op_serialize(data)

serialize(data)
openaps.reports.reporters.default_close_stream(reporter)

openaps.reports.reporters.default_prep_stream(reporter)

4.2. API 75

OpenAPS Documentation, Release 0.0.0

openaps.reports.reporters.get_reporter_map()

openaps.reports.reporters.get_reporters()

Submodules

openaps.reports.add module add - add a new report configuration

openaps.reports.add.configure_app(app, parser)

openaps.reports.add.configure_parser(parser)

openaps.reports.add.main(args, app)

openaps.reports.invoke module invoke - generate a report

openaps.reports.invoke.configure_app(app, parser)

openaps.reports.invoke.main(args, app)

openaps.reports.remove module remove - remove a device configuration

openaps.reports.remove.main(args, app)

openaps.reports.report module
class openaps.reports.report.Report(name=None, report=None, reporter=None, device=None,

use=None, **kwds)
Bases: openaps.configurable.Configurable

fields = {}

name = None

optional = []

prefix = ‘report’

required = [’report’, ‘reporter’, ‘device’, ‘use’]

url_template = ‘{device:s}://{reporter:s}/{use:s}/{name:s}’

openaps.reports.show module show - show all reports

openaps.reports.show.configure_app(app, parser)

openaps.reports.show.main(args, app)

Module contents
class openaps.reports.ReportAction(method=None, parent=None)

Bases: openaps.cli.subcommand.Subcommand

setup_application()
class openaps.reports.ReportManagementActions(parent)

Bases: openaps.cli.commandmapapp.CommandMapApp

reports - manage report configurations

Subcommand
alias of ReportAction

76 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

get_commands()

get_dest()

name = ‘action’

title = ‘## Reports Menu’

openaps.reports.get_devices(conf)

openaps.reports.get_report_map(conf)

openaps.reports.get_report_names(conf)

openaps.uses package

Submodules

openaps.uses.registry module
class openaps.uses.registry.Registry

Bases: object

get_uses(device, config)

openaps.uses.use module use - module for openaps devices to re-use

class openaps.uses.use.Use(method=None, parent=None)
Bases: openaps.cli.subcommand.Subcommand

A no-op base use. A Use is a mini well-behaved linux application. openaps framework will initialize your Use
with a method and parent objects, which are contextual objects within openaps.

after_main(args, app)

before_main(args, app)

from_ini(fields)

get_params(args)
Return dictionary of all parameters collected from args.

main(args, app)
Put main app logic here. print “HAHA”, args, app

to_ini(args)

Module contents
class openaps.uses.DeviceUsageMap(device=None, parent=None)

Bases: openaps.cli.commandmapapp.CommandMapApp

Map of uses for specific device

Subcommand
alias of DeviceUsageTask

get_commands()

get_description()

get_dest()

4.2. API 77

OpenAPS Documentation, Release 0.0.0

get_help()

get_metavar()

get_title()
class openaps.uses.DeviceUsageTask(method=None, parent=None)

Bases: openaps.cli.subcommand.Subcommand

One use

setup_application()

class openaps.uses.UseDeviceCommands(devices=None, parent=None, config=None)
Bases: openaps.cli.commandmapapp.CommandMapApp

device - which device to use

Subcommand
alias of UseDeviceTask

get_commands()

get_description()

get_dest()

get_help()

get_title()

metavar = ‘device’

class openaps.uses.UseDeviceTask(method=None, parent=None)
Bases: openaps.cli.subcommand.Subcommand

Manage device usage

Per vendor usage tasks for a device.

get_description()

get_help()

setup_application()

openaps.uses.all_uses(config, device)

openaps.uses.get_uses_for(device, parent=None)

openaps.uses.known_uses(config, device)

openaps.uses.no_uses(device, config)

openaps.uses.plugin_uses(config, device)

openaps.vendors package

Subpackages

openaps.vendors.plugins package

Submodules

78 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

openaps.vendors.plugins.add module Add a new vendor plugin to openaps-environment.

openaps.vendors.plugins.add.configure_app(app, parser)

openaps.vendors.plugins.add.main(args, app)

openaps.vendors.plugins.remove module Remove vendor plugin from openaps-environment

openaps.vendors.plugins.remove.main(args, app)

openaps.vendors.plugins.show module Show/list vendor plugins

openaps.vendors.plugins.show.configure_app(app, parser)

openaps.vendors.plugins.show.main(args, app)

openaps.vendors.plugins.vendor module
class openaps.vendors.plugins.vendor.Vendor(name=None, **kwds)

Bases: openaps.configurable.Configurable

fields = {}

get_module()

name = None

optional = []

prefix = ‘vendor’

required = [’name’]

url_template = ‘{name:s}://’

Module contents
class openaps.vendors.plugins.VendorAction(method=None, parent=None)

Bases: openaps.cli.subcommand.Subcommand

setup_application()
class openaps.vendors.plugins.VendorManagementActions(parent)

Bases: openaps.cli.commandmapapp.CommandMapApp

vendors - manage vendor plugin configurations

Subcommand
alias of VendorAction

get_commands()

get_dest()

name = ‘command’

title = ‘## Vendors Menu’

openaps.vendors.plugins.get_plugins(conf)

openaps.vendors.plugins.get_vendor_map(conf)

openaps.vendors.plugins.get_vendor_names(conf)

Submodules

4.2. API 79

OpenAPS Documentation, Release 0.0.0

openaps.vendors.dexcom module Dexcom - openaps driver for dexcom

class openaps.vendors.dexcom.GetFirmwareHeader(method=None, parent=None)
Bases: openaps.vendors.dexcom.scan

main(args, app)

class openaps.vendors.dexcom.ReadBatteryLevel(method=None, parent=None)
Bases: openaps.vendors.dexcom.scan

main(args, app)

class openaps.vendors.dexcom.ReadBatteryState(method=None, parent=None)
Bases: openaps.vendors.dexcom.scan

main(args, app)

class openaps.vendors.dexcom.ReadManufacturingData(method=None, parent=None)
Bases: openaps.vendors.dexcom.scan

main(args, app)

class openaps.vendors.dexcom.ReadTransmitterId(method=None, parent=None)
Bases: openaps.vendors.dexcom.scan

main(args, app)

class openaps.vendors.dexcom.battery(method=None, parent=None)
Bases: openaps.vendors.dexcom.scan

main(args, app)

class openaps.vendors.dexcom.calibrations(method=None, parent=None)
Bases: openaps.vendors.dexcom.scan

read calibration entry records

main(args, app)
Implement a main method that takes args and app as parameters. Use self.dexcom.Read... to get data.
Return the resulting data for this task/command. The data will be passed to prerender_<format> by the
reporting system.

prerender_json(data)
since everything is a dict/strings/ints, we can pass thru to json

prerender_stdout(data)

prerender_text(data)
turn everything into a string

openaps.vendors.dexcom.display_device(device)

class openaps.vendors.dexcom.glucose(method=None, parent=None)
Bases: openaps.vendors.dexcom.scan

This is a good example of what is needed for new commands. To add additional commands, subclass from scan
as shown.

RECORD_TYPE = ‘EGV_DATA’

TEXT_COLUMNS = [’display_time’, ‘glucose’, ‘trend_arrow’]

main(args, app)
Implement a main method that takes args and app as parameters. Use self.dexcom.Read... to get data.
Return the resulting data for this task/command. The data will be passed to prerender_<format> by the
reporting system.

80 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

prerender_json(data)
since everything is a dict/strings/ints, we can pass thru to json

prerender_stdout(data)

prerender_text(data)
turn everything into a string

class openaps.vendors.dexcom.insertion_time(method=None, parent=None)
Bases: openaps.vendors.dexcom.sensor

Fetch INSERTION_TIME records from the Dexcom receiver.

These are created when sensors are started.

RECORD_TYPE = ‘INSERTION_TIME’

TEXT_COLUMNS = [’display_time’, ‘system_time’, ‘insertion_time’, ‘session_state’]

class openaps.vendors.dexcom.iter_calibrations(method=None, parent=None)
Bases: openaps.vendors.dexcom.calibrations

read last <count> calibration records, default 10, eg:

•iter_calibrations - read last 10 calibration records

•iter_calibrations 2 - read last 2 calibration records

configure_app(app, parser)

get_params(args)

main(args, app)

class openaps.vendors.dexcom.iter_calibrations_hours(method=None, parent=None)
Bases: openaps.vendors.dexcom.calibrations

read last <hours> of calibration records, default 1, eg:

•iter_calibrations_hours - read last 1 hour of calibration records

•iter_calibrations_hours 4.3 - read last 4.3 hours of calibration records

configure_app(app, parser)

get_params(args)

main(args, app)

class openaps.vendors.dexcom.iter_glucose(method=None, parent=None)
Bases: openaps.vendors.dexcom.glucose

read last <count> glucose records, default 100, eg:

•iter_glucose - read last 100 records

•iter_glucose 2 - read last 2 records

RECORD_TYPE = ‘EGV_DATA’

configure_app(app, parser)

get_params(args)

main(args, app)

4.2. API 81

OpenAPS Documentation, Release 0.0.0

class openaps.vendors.dexcom.iter_glucose_hours(method=None, parent=None)
Bases: openaps.vendors.dexcom.glucose

read last <hours> of glucose records, default 1, eg:

•iter_glucose_hours - read last 1 hour of glucose records

•iter_glucose_hours 4.3 - read last 4.3 hours of glucose records

configure_app(app, parser)

get_params(args)

main(args, app)

class openaps.vendors.dexcom.iter_insertion_time(method=None, parent=None)
Bases: openaps.vendors.dexcom.iter_sensor, openaps.vendors.dexcom.insertion_time

RECORD_TYPE = ‘INSERTION_TIME’

TEXT_COLUMNS = [’display_time’, ‘system_time’, ‘insertion_time’, ‘session_state’]

class openaps.vendors.dexcom.iter_insertion_time_hours(method=None, parent=None)
Bases: openaps.vendors.dexcom.iter_sensor_hours, openaps.vendors.dexcom.iter_insertion_time

RECORD_TYPE = ‘INSERTION_TIME’

TEXT_COLUMNS = [’display_time’, ‘system_time’, ‘insertion_time’, ‘session_state’]

class openaps.vendors.dexcom.iter_meter_data(method=None, parent=None)
Bases: openaps.vendors.dexcom.iter_sensor, openaps.vendors.dexcom.meter_data

RECORD_TYPE = ‘METER_DATA’

TEXT_COLUMNS = [’display_time’, ‘system_time’, ‘meter_time’, ‘meter_glucose’]

class openaps.vendors.dexcom.iter_meter_data_hours(method=None, parent=None)
Bases: openaps.vendors.dexcom.iter_sensor_hours, openaps.vendors.dexcom.iter_meter_data

RECORD_TYPE = ‘METER_DATA’

TEXT_COLUMNS = [’display_time’, ‘system_time’, ‘meter_time’, ‘meter_glucose’]

class openaps.vendors.dexcom.iter_sensor(method=None, parent=None)
Bases: openaps.vendors.dexcom.iter_glucose, openaps.vendors.dexcom.sensor

RECORD_TYPE = ‘SENSOR_DATA’

TEXT_COLUMNS = [’display_time’, ‘unfiltered’, ‘filtered’, ‘rssi’]

class openaps.vendors.dexcom.iter_sensor_hours(method=None, parent=None)
Bases: openaps.vendors.dexcom.iter_glucose_hours, openaps.vendors.dexcom.iter_sensor

RECORD_TYPE = ‘SENSOR_DATA’

TEXT_COLUMNS = [’display_time’, ‘unfiltered’, ‘filtered’, ‘rssi’]

class openaps.vendors.dexcom.iter_sensor_insertions(method=None, parent=None)
Bases: openaps.vendors.dexcom.sensor_insertions

read last <count> sensor insertion, removal, and expiration records, default 10, eg:

•iter_sensor_insertions - read last 10 records

82 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

•iter_sensor_insertions 2 - read last 2 records

configure_app(app, parser)

get_params(args)

main(args, app)

class openaps.vendors.dexcom.iter_sensor_insertions_hours(method=None, par-
ent=None)

Bases: openaps.vendors.dexcom.sensor_insertions

read last <hours> of sensor insertion, removal, and expiration records, default 1, eg:

•iter_sensor_insertions_hours - read last 1 hour of sensor insertion, removal, and expiration records

•iter_sensor_insertions_hours 4.3 - read last 4.3 hours of sensor insertion, removal, and expiration records

configure_app(app, parser)

get_params(args)

main(args, app)

class openaps.vendors.dexcom.iter_user_event_data(method=None, parent=None)
Bases: openaps.vendors.dexcom.iter_sensor, openaps.vendors.dexcom.user_event_data

RECORD_TYPE = ‘USER_EVENT_DATA’

TEXT_COLUMNS = [’display_time’, ‘system_time’, ‘event_type’, ‘event_sub_type’, ‘event_value’]

class openaps.vendors.dexcom.iter_user_event_data_hours(method=None, parent=None)
Bases: openaps.vendors.dexcom.iter_sensor_hours, openaps.vendors.dexcom.iter_user_event_data

RECORD_TYPE = ‘USER_EVENT_DATA’

TEXT_COLUMNS = [’display_time’, ‘system_time’, ‘event_type’, ‘event_sub_type’, ‘event_value’]

class openaps.vendors.dexcom.meter_data(method=None, parent=None)
Bases: openaps.vendors.dexcom.sensor

Fetch METER_DATA records from the Dexcom receiver.

RECORD_TYPE = ‘METER_DATA’

TEXT_COLUMNS = [’display_time’, ‘system_time’, ‘meter_time’, ‘meter_glucose’]

class openaps.vendors.dexcom.scan(method=None, parent=None)
Bases: openaps.uses.use.Use

scan for usb stick

before_main(args, app)

main(args, app)

scanner()

class openaps.vendors.dexcom.sensor(method=None, parent=None)
Bases: openaps.vendors.dexcom.glucose

Fetch Sensor (raw) records from Dexcom receiver.

Fetches raw records.

RECORD_TYPE = ‘SENSOR_DATA’

4.2. API 83

OpenAPS Documentation, Release 0.0.0

TEXT_COLUMNS = [’display_time’, ‘unfiltered’, ‘filtered’, ‘rssi’]

class openaps.vendors.dexcom.sensor_insertions(method=None, parent=None)
Bases: openaps.vendors.dexcom.scan

read sensor insertion, removal, and expiration records of sensors

main(args, app)
Implement a main method that takes args and app as parameters. Use self.dexcom.Read... to get data.
Return the resulting data for this task/command. The data will be passed to prerender_<format> by the
reporting system.

prerender_json(data)
since everything is a dict/strings/ints, we can pass thru to json

prerender_stdout(data)

prerender_text(data)
turn everything into a string

openaps.vendors.dexcom.set_config(args, device)

class openaps.vendors.dexcom.user_event_data(method=None, parent=None)
Bases: openaps.vendors.dexcom.sensor

Fetch USER_EVENT_DATA records from the Dexcom receiver.

RECORD_TYPE = ‘USER_EVENT_DATA’

TEXT_COLUMNS = [’display_time’, ‘system_time’, ‘event_type’, ‘event_sub_type’, ‘event_value’]

openaps.vendors.medtronic module Medtronic - openaps driver for Medtronic

class openaps.vendors.medtronic.InputProgramRequired(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

configure_app(app, parser)

get_params(args)

get_program(args)

main(args, app)

upload_program(program)

class openaps.vendors.medtronic.MedtronicTask(method=None, parent=None)
Bases: openaps.vendors.medtronic.scan

MAX_SESSION_DURATION = 10

after_main(args, app)

before_main(args, app)

check_session(app)

create_session()

get_model()

get_session_info()

main(args, app)

record_stats = True

84 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

requires_session = True

save_session = True

setup_medtronic()

update_session_info(fields)

class openaps.vendors.medtronic.SameNameCommand(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

main(args, app)

class openaps.vendors.medtronic.SelectedNameCommand(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

main(args, app)

class openaps.vendors.medtronic.Session(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

session for pump

configure_parser(parser)

main(args, app)

requires_session = False

setup_application()

class openaps.vendors.medtronic.bolus(method=None, parent=None)
Bases: openaps.vendors.medtronic.InputProgramRequired

Send bolus.

Requires json input with the following keys defined:

• units - Number of units to bolus.

Zero point one units: { “units”: 0.1 }

Two units: { “units”: 2 }

upload_program(program)

openaps.vendors.medtronic.configure_add_app(app, parser)

openaps.vendors.medtronic.configure_app(app, parser)

openaps.vendors.medtronic.configure_parser(parser)

openaps.vendors.medtronic.configure_use_app(app, parser)

openaps.vendors.medtronic.display_device(device)

class openaps.vendors.medtronic.filter_glucose_date(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Search for glucose pages including begin and end dates (iso 8601).

configure_app(app, parser)

get_params(args)

class openaps.vendors.medtronic.filter_isig_date(method=None, parent=None)
Bases: openaps.vendors.medtronic.filter_glucose_date

Search for isig pages including begin and end dates (iso 8601).

4.2. API 85

OpenAPS Documentation, Release 0.0.0

openaps.vendors.medtronic.get_uses(device, config)

class openaps.vendors.medtronic.iter_glucose(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

Read latest 100 glucose records

configure_app(app, parser)

get_params(args)

main(args, app)

maxCount = 99

range()

class openaps.vendors.medtronic.iter_glucose_hours(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

Read latest n hours of glucose data

configure_app(app, parser)

get_params(args)

get_record_timestamp(record)

main(args, app)

range()

class openaps.vendors.medtronic.iter_pump(method=None, parent=None)
Bases: openaps.vendors.medtronic.iter_glucose

Read latest 100 pump records

range()

class openaps.vendors.medtronic.iter_pump_hours(method=None, parent=None)
Bases: openaps.vendors.medtronic.iter_glucose_hours

Read latest n hours of pump records

get_record_timestamp(record)

range()

openaps.vendors.medtronic.main(args, app)
print “MEDTRONIC”, args, app print “app commands”, app.selected.name

class openaps.vendors.medtronic.model(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

Get model number

configure_app(app, parser)

main(args, app)

class openaps.vendors.medtronic.mytest(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

Testing read_settings

main(args, app)

requires_session = False

86 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

class openaps.vendors.medtronic.read_basal_profile_A(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Read basal profile A.

class openaps.vendors.medtronic.read_basal_profile_B(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Read basal profile B.

class openaps.vendors.medtronic.read_basal_profile_std(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Read default basal profile.

class openaps.vendors.medtronic.read_battery_status(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Check battery status.

class openaps.vendors.medtronic.read_bg_targets(method=None, parent=None)
Bases: openaps.vendors.medtronic.SelectedNameCommand

Read bg targets.

selected = ‘read_bg_targets’

class openaps.vendors.medtronic.read_carb_ratios(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Read carb_ratios.

class openaps.vendors.medtronic.read_clock(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

Read date/time of pump

main(args, app)

class openaps.vendors.medtronic.read_current_glucose_pages(method=None, par-
ent=None)

Bases: openaps.vendors.medtronic.SameNameCommand

Read current glucose pages.

class openaps.vendors.medtronic.read_current_history_pages(method=None, par-
ent=None)

Bases: openaps.vendors.medtronic.SameNameCommand

Read current history pages.

class openaps.vendors.medtronic.read_glucose_data(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Read pump glucose page

configure_app(app, parser)

get_params(args)

class openaps.vendors.medtronic.read_history_data(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

Read pump history page

configure_app(app, parser)

get_params(args)

4.2. API 87

OpenAPS Documentation, Release 0.0.0

main(args, app)

class openaps.vendors.medtronic.read_insulin_sensitivies(method=None, par-
ent=None)

Bases: openaps.vendors.medtronic.SameNameCommand

XXX: Deprecated. Don’t use. Use read_insulin_sensitivities instead.

class openaps.vendors.medtronic.read_insulin_sensitivities(method=None, par-
ent=None)

Bases: openaps.vendors.medtronic.SameNameCommand

Read insulin sensitivities.

class openaps.vendors.medtronic.read_selected_basal_profile(method=None, par-
ent=None)

Bases: openaps.vendors.medtronic.SameNameCommand

Fetch the currently selected basal profile.

class openaps.vendors.medtronic.read_settings(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Read settings.

class openaps.vendors.medtronic.read_status(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

Get pump status

main(args, app)

class openaps.vendors.medtronic.read_temp_basal(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Read temporary basal rates.

class openaps.vendors.medtronic.reservoir(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

Get pump remaining insulin

main(args, app)

class openaps.vendors.medtronic.resume_pump(method=None, parent=None)
Bases: openaps.vendors.medtronic.suspend_pump

resume pumping.

class openaps.vendors.medtronic.scan(method=None, parent=None)
Bases: openaps.uses.use.Use

scan for usb stick

configure_app(app, parser)

main(args, app)

scanner()

openaps.vendors.medtronic.set_config(args, device)

class openaps.vendors.medtronic.set_temp_basal(method=None, parent=None)
Bases: openaps.vendors.medtronic.InputProgramRequired

Set temporary basal rates.

Requires json input with the following keys defined:

88 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

• temp - the type of temporary rate, percent or absolute

• rate - The temporary rate, in units. Examples, 0.0, 1.2, 0.1

• duration - The duration in minutes of the temporary rate. The duration must be multiples of 30
minutes.

Eg, actively canceling a rate: { “temp”: “absolute”, “rate”: 0, “duration”: 0 }

Zero basal for half hour: { “temp”: “absolute”, “rate”: 0, “duration”: 30 }

One and a half units for one hour: { “temp”: “absolute”, “rate”: 1.5, “duration”: 60 }

required_inputs = [’duration’, ‘rate’]

upload_program(program)

class openaps.vendors.medtronic.settings(method=None, parent=None)
Bases: openaps.vendors.medtronic.MedtronicTask

Get pump settings

main(args, app)

class openaps.vendors.medtronic.status(method=None, parent=None)
Bases: openaps.vendors.medtronic.read_status

Get pump status (alias for read_status)

class openaps.vendors.medtronic.suspend_pump(method=None, parent=None)
Bases: openaps.vendors.medtronic.SameNameCommand

Suspend pumping.

main(args, app)

openaps.vendors.process module process - a fake vendor to run arbitrary commands

openaps.vendors.process.configure_add_app(app, parser)

openaps.vendors.process.display_device(device)

openaps.vendors.process.set_config(args, device)

class openaps.vendors.process.shell(method=None, parent=None)
Bases: openaps.uses.use.Use

run a process in a subshell

configure_app(app, parser)

get_params(args)

main(args, app)

prerender_json(data)
since everything is a dict/strings/ints, we can pass thru to json

openaps.vendors.units module Units - units tool for openaps

class openaps.vendors.units.ConvertInput(method=None, parent=None)
Bases: openaps.uses.use.Use

CONVERTERS = {‘mg/dL’: <bound method type.mmol_l_to_mg_dl of <class ‘openaps.glucose.convert.Convert’>>, ‘mmol/L’: <bound method type.mg_dl_to_mmol_l of <class ‘openaps.glucose.convert.Convert’>>}

configure_app(app, parser)

4.2. API 89

OpenAPS Documentation, Release 0.0.0

convert(program)

get_params(args)

get_program(args)

main(args, app)

set_converter(args)

class openaps.vendors.units.bg_targets(method=None, parent=None)
Bases: openaps.vendors.units.ConvertInput

Convert bg_targets json to preferred unit.

convert(bg_targets)

openaps.vendors.units.display_device(device)

openaps.vendors.units.get_uses(device, config)

class openaps.vendors.units.insulin_sensitivities(method=None, parent=None)
Bases: openaps.vendors.units.ConvertInput

Convert read_insulin_sensitivities json to preferred unit.

convert(insulin_sensitivities)

openaps.vendors.units.set_config(args, device)

Module contents
class openaps.vendors.ChangeVendorApp(method=None, parent=None)

Bases: openaps.cli.subcommand.Subcommand

Allow subcommand to handle setup_application
class openaps.vendors.VendorConfigurations(parent)

Bases: openaps.cli.commandmapapp.CommandMapApp

Subcommand
alias of ChangeVendorApp

get_commands()

get_dest()

get_vendor(vendor)

openaps.vendors.all_vendors(config=None)

openaps.vendors.find_plugins(config)

openaps.vendors.get_configurable_devices(ctx)

openaps.vendors.get_map(config=None)

openaps.vendors.get_vendors()

openaps.vendors.lookup(name, config=None)

openaps.vendors.lookup_dotted(name, config=None)

Submodules

90 Chapter 4. Reference

OpenAPS Documentation, Release 0.0.0

openaps.builtins module
class openaps.builtins.BuiltinApp(args)

Bases: openaps.cli.ConfigApp

name = ‘builtin’
class openaps.builtins.RunnableAlias(spec, parent)

Bases: object

openaps.builtins.dispatch(args, back)

openaps.builtins.get_alias(command, app)

openaps.builtins.get_builtins()

openaps.builtins.is_builtin(command)

openaps.config module
class openaps.config.Config(defaults=None, dict_type=<class ‘collections.OrderedDict’>, al-

low_no_value=False)
Bases: ConfigParser.SafeConfigParser

OPTCRE = <_sre.SRE_Pattern object>

classmethod Read(klass, name=None, defaults=[’/etc/openaps/openaps.ini’,
‘/home/docs/.openaps.ini’, ‘openaps.ini’])

add_device(device)

fmt()
Write an .ini-format representation of the configuration state.

ini_name = ‘openaps.ini’

remove_device(device)

save()

set_ini_path(ini_path=’openaps.ini’)

openaps.configurable module
class openaps.configurable.Configurable(name, **kwargs)

Bases: object

classmethod FromConfig(klass, config)

classmethod FromImport(klass, candidate, config=None)

add_option(k, v)

format_url()

get(k, *args)

items()

name = None

optional = []

prefix = ‘{name:s}’

remove(config)

required = []

section_name()

4.2. API 91

OpenAPS Documentation, Release 0.0.0

store(config)

url_template = ‘’

openaps.init module
openaps.init.init(args)

Module contents

92 Chapter 4. Reference

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

93

OpenAPS Documentation, Release 0.0.0

94 Chapter 5. Indices and tables

Python Module Index

o
openaps, 92
openaps.alias, 71
openaps.alias.add, 70
openaps.alias.alias, 70
openaps.alias.remove, 71
openaps.alias.show, 71
openaps.builtins, 91
openaps.cli, 73
openaps.cli.commandmapapp, 71
openaps.cli.helpers, 72
openaps.cli.subcommand, 72
openaps.config, 91
openaps.configurable, 91
openaps.devices, 74
openaps.devices.add, 73
openaps.devices.device, 73
openaps.devices.remove, 74
openaps.devices.show, 74
openaps.glucose, 75
openaps.glucose.convert, 74
openaps.glucose.display, 75
openaps.init, 92
openaps.reports, 76
openaps.reports.add, 76
openaps.reports.invoke, 76
openaps.reports.remove, 76
openaps.reports.report, 76
openaps.reports.reporters, 75
openaps.reports.reporters.base, 75
openaps.reports.reporters.JSON, 75
openaps.reports.reporters.stdout, 75
openaps.reports.reporters.text, 75
openaps.reports.show, 76
openaps.uses, 77
openaps.uses.registry, 77
openaps.uses.use, 77
openaps.vendors, 90
openaps.vendors.dexcom, 80
openaps.vendors.medtronic, 84

openaps.vendors.plugins, 79
openaps.vendors.plugins.add, 79
openaps.vendors.plugins.remove, 79
openaps.vendors.plugins.show, 79
openaps.vendors.plugins.vendor, 79
openaps.vendors.process, 89
openaps.vendors.units, 89

95

OpenAPS Documentation, Release 0.0.0

96 Python Module Index

Index

A
add_device() (openaps.config.Config method), 91
add_option() (openaps.configurable.Configurable

method), 91
after_main() (openaps.uses.use.Use method), 77
after_main() (openaps.vendors.medtronic.MedtronicTask

method), 84
Alias (class in openaps.alias.alias), 70
AliasAction (class in openaps.alias), 71
AliasManagement (class in openaps.alias), 71
all_uses() (in module openaps.uses), 78
all_vendors() (in module openaps.vendors), 90
always_complete_options (openaps.cli.Base attribute), 73

B
Base (class in openaps.cli), 73
battery (class in openaps.vendors.dexcom), 80
before_main() (openaps.uses.use.Use method), 77
before_main() (openaps.vendors.dexcom.scan method),

83
before_main() (openaps.vendors.medtronic.MedtronicTask

method), 84
bg_targets (class in openaps.vendors.units), 90
bolus (class in openaps.vendors.medtronic), 85
BuiltinApp (class in openaps.builtins), 91

C
calibrations (class in openaps.vendors.dexcom), 80
ChangeVendorApp (class in openaps.vendors), 90
check_session() (openaps.vendors.medtronic.MedtronicTask

method), 84
close() (openaps.reports.reporters.Reporter method), 75
close_output_stream() (in module ope-

naps.reports.reporters.stdout), 75
CommandMapApp (class in ope-

naps.cli.commandmapapp), 71
CommandMapApp.Subcommand (class in ope-

naps.cli.commandmapapp), 71
commands (openaps.cli.commandmapapp.CommandMapApp

attribute), 72

Config (class in openaps.config), 91
ConfigApp (class in openaps.cli), 73
Configurable (class in openaps.configurable), 91
configure_add_app() (in module ope-

naps.vendors.medtronic), 85
configure_add_app() (in module ope-

naps.vendors.process), 89
configure_app() (in module openaps.alias.add), 70
configure_app() (in module openaps.alias.show), 71
configure_app() (in module openaps.devices.add), 73
configure_app() (in module openaps.devices.show), 74
configure_app() (in module openaps.reports.add), 76
configure_app() (in module openaps.reports.invoke), 76
configure_app() (in module openaps.reports.show), 76
configure_app() (in module openaps.vendors.medtronic),

85
configure_app() (in module ope-

naps.vendors.plugins.add), 79
configure_app() (in module ope-

naps.vendors.plugins.show), 79
configure_app() (openaps.vendors.dexcom.iter_calibrations

method), 81
configure_app() (openaps.vendors.dexcom.iter_calibrations_hours

method), 81
configure_app() (openaps.vendors.dexcom.iter_glucose

method), 81
configure_app() (openaps.vendors.dexcom.iter_glucose_hours

method), 82
configure_app() (openaps.vendors.dexcom.iter_sensor_insertions

method), 83
configure_app() (openaps.vendors.dexcom.iter_sensor_insertions_hours

method), 83
configure_app() (openaps.vendors.medtronic.filter_glucose_date

method), 85
configure_app() (openaps.vendors.medtronic.InputProgramRequired

method), 84
configure_app() (openaps.vendors.medtronic.iter_glucose

method), 86
configure_app() (openaps.vendors.medtronic.iter_glucose_hours

method), 86

97

OpenAPS Documentation, Release 0.0.0

configure_app() (openaps.vendors.medtronic.model
method), 86

configure_app() (openaps.vendors.medtronic.read_glucose_data
method), 87

configure_app() (openaps.vendors.medtronic.read_history_data
method), 87

configure_app() (openaps.vendors.medtronic.scan
method), 88

configure_app() (openaps.vendors.process.shell method),
89

configure_app() (openaps.vendors.units.ConvertInput
method), 89

configure_commands() (in module openaps.devices), 74
configure_commands() (ope-

naps.cli.commandmapapp.CommandMapApp
method), 72

configure_parser() (in module openaps.devices.add), 73
configure_parser() (in module openaps.reports.add), 76
configure_parser() (in module ope-

naps.vendors.medtronic), 85
configure_parser() (openaps.cli.Base method), 73
configure_parser() (ope-

naps.cli.commandmapapp.CommandMapApp.Subcommand
method), 71

configure_parser() (ope-
naps.cli.subcommand.Subcommand method),
72

configure_parser() (openaps.vendors.medtronic.Session
method), 85

configure_subparser() (ope-
naps.cli.commandmapapp.CommandMapApp.Subcommand
method), 71

configure_subparser() (ope-
naps.cli.subcommand.Subcommand method),
72

configure_use_app() (in module ope-
naps.vendors.medtronic), 85

Convert (class in openaps.glucose.convert), 74
convert() (openaps.vendors.units.bg_targets method), 90
convert() (openaps.vendors.units.ConvertInput method),

89
convert() (openaps.vendors.units.insulin_sensitivities

method), 90
CONVERTERS (openaps.vendors.units.ConvertInput at-

tribute), 89
ConvertInput (class in openaps.vendors.units), 89
create_git_commit() (openaps.cli.ConfigApp method), 73
create_session() (openaps.vendors.medtronic.MedtronicTask

method), 84

D
date_handler() (in module ope-

naps.reports.reporters.JSON), 75

default_close_stream() (in module ope-
naps.reports.reporters), 75

default_prep_stream() (in module ope-
naps.reports.reporters), 75

Device (class in openaps.devices.device), 73
DeviceConfig (class in openaps.devices), 74
DeviceUsageMap (class in openaps.uses), 77
DeviceUsageTask (class in openaps.uses), 78
dispatch() (in module openaps.builtins), 91
Display (class in openaps.glucose.display), 75
display() (openaps.glucose.display.Display class

method), 75
display_device() (in module openaps.vendors.dexcom),

80
display_device() (in module openaps.vendors.medtronic),

85
display_device() (in module openaps.vendors.process),

89
display_device() (in module openaps.vendors.units), 90

E
epilog() (openaps.cli.Base method), 73
epilog() (openaps.cli.ConfigApp method), 73
ExtraConfig (class in openaps.devices.device), 74

F
fields (openaps.alias.alias.Alias attribute), 70
fields (openaps.reports.report.Report attribute), 76
fields (openaps.vendors.plugins.vendor.Vendor attribute),

79
filter_glucose_date (class in openaps.vendors.medtronic),

85
filter_isig_date (class in openaps.vendors.medtronic), 85
find_plugins() (in module openaps.vendors), 90
fmt() (openaps.config.Config method), 91
format_ini() (in module openaps.cli.helpers), 72
format_json() (in module openaps.cli.helpers), 72
format_url() (in module openaps.cli.helpers), 72
format_url() (openaps.configurable.Configurable

method), 91
format_url() (openaps.devices.device.Device method), 73
formatter_class (openaps.cli.commandmapapp.CommandMapApp.Subcommand

attribute), 71
formatter_class (openaps.cli.subcommand.Subcommand

attribute), 72
from_ini() (openaps.uses.use.Use method), 77
FromConfig() (openaps.alias.alias.Alias class method),

70
FromConfig() (openaps.configurable.Configurable class

method), 91
FromConfig() (openaps.devices.device.Device class

method), 73
FromImport() (openaps.configurable.Configurable class

method), 91

98 Index

OpenAPS Documentation, Release 0.0.0

FromImport() (openaps.devices.device.Device class
method), 73

G
get() (openaps.cli.commandmapapp.CommandMapApp

method), 72
get() (openaps.configurable.Configurable method), 91
get() (openaps.devices.device.Device method), 73
get_alias() (in module openaps.builtins), 91
get_alias_map() (in module openaps.alias), 71
get_builtins() (in module openaps.builtins), 91
get_commands() (openaps.alias.AliasManagement

method), 71
get_commands() (openaps.cli.commandmapapp.CommandMapApp

method), 72
get_commands() (openaps.reports.ReportManagementActions

method), 77
get_commands() (openaps.uses.DeviceUsageMap

method), 77
get_commands() (openaps.uses.UseDeviceCommands

method), 78
get_commands() (openaps.vendors.plugins.VendorManagementActions

method), 79
get_commands() (openaps.vendors.VendorConfigurations

method), 90
get_configurable_devices() (in module openaps.vendors),

90
get_description() (openaps.cli.commandmapapp.CommandMapApp

method), 72
get_description() (openaps.cli.commandmapapp.CommandMapApp.Subcommand

method), 71
get_description() (openaps.cli.subcommand.Subcommand

method), 72
get_description() (openaps.uses.DeviceUsageMap

method), 77
get_description() (openaps.uses.UseDeviceCommands

method), 78
get_description() (openaps.uses.UseDeviceTask method),

78
get_dest() (openaps.alias.AliasManagement method), 71
get_dest() (openaps.cli.commandmapapp.CommandMapApp

method), 72
get_dest() (openaps.reports.ReportManagementActions

method), 77
get_dest() (openaps.uses.DeviceUsageMap method), 77
get_dest() (openaps.uses.UseDeviceCommands method),

78
get_dest() (openaps.vendors.plugins.VendorManagementActions

method), 79
get_dest() (openaps.vendors.VendorConfigurations

method), 90
get_device_map() (in module openaps.devices), 74
get_device_names() (in module openaps.devices), 74
get_devices() (in module openaps.devices), 74

get_devices() (in module openaps.reports), 77
get_epilog() (openaps.cli.commandmapapp.CommandMapApp.Subcommand

method), 71
get_epilog() (openaps.cli.subcommand.Subcommand

method), 72
get_help() (openaps.cli.commandmapapp.CommandMapApp

method), 72
get_help() (openaps.cli.commandmapapp.CommandMapApp.Subcommand

method), 72
get_help() (openaps.cli.subcommand.Subcommand

method), 72
get_help() (openaps.uses.DeviceUsageMap method), 77
get_help() (openaps.uses.UseDeviceCommands method),

78
get_help() (openaps.uses.UseDeviceTask method), 78
get_map() (in module openaps.vendors), 90
get_metavar() (openaps.cli.commandmapapp.CommandMapApp

method), 72
get_metavar() (openaps.uses.DeviceUsageMap method),

78
get_model() (openaps.vendors.medtronic.MedtronicTask

method), 84
get_module() (openaps.vendors.plugins.vendor.Vendor

method), 79
get_output_stream() (in module ope-

naps.reports.reporters.stdout), 75
get_params() (openaps.uses.use.Use method), 77
get_params() (openaps.vendors.dexcom.iter_calibrations

method), 81
get_params() (openaps.vendors.dexcom.iter_calibrations_hours

method), 81
get_params() (openaps.vendors.dexcom.iter_glucose

method), 81
get_params() (openaps.vendors.dexcom.iter_glucose_hours

method), 82
get_params() (openaps.vendors.dexcom.iter_sensor_insertions

method), 83
get_params() (openaps.vendors.dexcom.iter_sensor_insertions_hours

method), 83
get_params() (openaps.vendors.medtronic.filter_glucose_date

method), 85
get_params() (openaps.vendors.medtronic.InputProgramRequired

method), 84
get_params() (openaps.vendors.medtronic.iter_glucose

method), 86
get_params() (openaps.vendors.medtronic.iter_glucose_hours

method), 86
get_params() (openaps.vendors.medtronic.read_glucose_data

method), 87
get_params() (openaps.vendors.medtronic.read_history_data

method), 87
get_params() (openaps.vendors.process.shell method), 89
get_params() (openaps.vendors.units.ConvertInput

method), 90

Index 99

OpenAPS Documentation, Release 0.0.0

get_plugins() (in module openaps.vendors.plugins), 79
get_program() (openaps.vendors.medtronic.InputProgramRequired

method), 84
get_program() (openaps.vendors.units.ConvertInput

method), 90
get_record_timestamp() (ope-

naps.vendors.medtronic.iter_glucose_hours
method), 86

get_record_timestamp() (ope-
naps.vendors.medtronic.iter_pump_hours
method), 86

get_report_map() (in module openaps.reports), 77
get_report_names() (in module openaps.reports), 77
get_reporter_map() (in module ope-

naps.reports.reporters), 75
get_reporters() (in module openaps.reports.reporters), 76
get_session_info() (ope-

naps.vendors.medtronic.MedtronicTask
method), 84

get_title() (openaps.cli.commandmapapp.CommandMapApp
method), 72

get_title() (openaps.uses.DeviceUsageMap method), 78
get_title() (openaps.uses.UseDeviceCommands method),

78
get_uses() (in module openaps.vendors.medtronic), 85
get_uses() (in module openaps.vendors.units), 90
get_uses() (openaps.uses.registry.Registry method), 77
get_uses_for() (in module openaps.uses), 78
get_vendor() (openaps.vendors.VendorConfigurations

method), 90
get_vendor_map() (in module openaps.vendors.plugins),

79
get_vendor_names() (in module ope-

naps.vendors.plugins), 79
get_vendors() (in module openaps.vendors), 90
GetFirmwareHeader (class in openaps.vendors.dexcom),

80
git_repo() (openaps.cli.ConfigApp method), 73
glucose (class in openaps.vendors.dexcom), 80

I
ini_name (openaps.config.Config attribute), 91
init() (in module openaps.init), 92
InputProgramRequired (class in ope-

naps.vendors.medtronic), 84
insertion_time (class in openaps.vendors.dexcom), 81
install_show_arguments() (in module ope-

naps.cli.helpers), 72
insulin_sensitivities (class in openaps.vendors.units), 90
is_builtin() (in module openaps.builtins), 91
items() (openaps.configurable.Configurable method), 91
iter_calibrations (class in openaps.vendors.dexcom), 81
iter_calibrations_hours (class in ope-

naps.vendors.dexcom), 81

iter_glucose (class in openaps.vendors.dexcom), 81
iter_glucose (class in openaps.vendors.medtronic), 86
iter_glucose_hours (class in openaps.vendors.dexcom),

81
iter_glucose_hours (class in openaps.vendors.medtronic),

86
iter_insertion_time (class in openaps.vendors.dexcom),

82
iter_insertion_time_hours (class in ope-

naps.vendors.dexcom), 82
iter_meter_data (class in openaps.vendors.dexcom), 82
iter_meter_data_hours (class in ope-

naps.vendors.dexcom), 82
iter_pump (class in openaps.vendors.medtronic), 86
iter_pump_hours (class in openaps.vendors.medtronic),

86
iter_sensor (class in openaps.vendors.dexcom), 82
iter_sensor_hours (class in openaps.vendors.dexcom), 82
iter_sensor_insertions (class in ope-

naps.vendors.dexcom), 82
iter_sensor_insertions_hours (class in ope-

naps.vendors.dexcom), 83
iter_user_event_data (class in openaps.vendors.dexcom),

83
iter_user_event_data_hours (class in ope-

naps.vendors.dexcom), 83

K
known_uses() (in module openaps.uses), 78

L
lookup() (in module openaps.vendors), 90
lookup_dotted() (in module openaps.vendors), 90

M
main() (in module openaps.alias.add), 70
main() (in module openaps.alias.remove), 71
main() (in module openaps.alias.show), 71
main() (in module openaps.devices.add), 73
main() (in module openaps.devices.remove), 74
main() (in module openaps.devices.show), 74
main() (in module openaps.reports.add), 76
main() (in module openaps.reports.invoke), 76
main() (in module openaps.reports.remove), 76
main() (in module openaps.reports.show), 76
main() (in module openaps.vendors.medtronic), 86
main() (in module openaps.vendors.plugins.add), 79
main() (in module openaps.vendors.plugins.remove), 79
main() (in module openaps.vendors.plugins.show), 79
main() (openaps.uses.use.Use method), 77
main() (openaps.vendors.dexcom.battery method), 80
main() (openaps.vendors.dexcom.calibrations method),

80

100 Index

OpenAPS Documentation, Release 0.0.0

main() (openaps.vendors.dexcom.GetFirmwareHeader
method), 80

main() (openaps.vendors.dexcom.glucose method), 80
main() (openaps.vendors.dexcom.iter_calibrations

method), 81
main() (openaps.vendors.dexcom.iter_calibrations_hours

method), 81
main() (openaps.vendors.dexcom.iter_glucose method),

81
main() (openaps.vendors.dexcom.iter_glucose_hours

method), 82
main() (openaps.vendors.dexcom.iter_sensor_insertions

method), 83
main() (openaps.vendors.dexcom.iter_sensor_insertions_hours

method), 83
main() (openaps.vendors.dexcom.ReadBatteryLevel

method), 80
main() (openaps.vendors.dexcom.ReadBatteryState

method), 80
main() (openaps.vendors.dexcom.ReadManufacturingData

method), 80
main() (openaps.vendors.dexcom.ReadTransmitterId

method), 80
main() (openaps.vendors.dexcom.scan method), 83
main() (openaps.vendors.dexcom.sensor_insertions

method), 84
main() (openaps.vendors.medtronic.InputProgramRequired

method), 84
main() (openaps.vendors.medtronic.iter_glucose

method), 86
main() (openaps.vendors.medtronic.iter_glucose_hours

method), 86
main() (openaps.vendors.medtronic.MedtronicTask

method), 84
main() (openaps.vendors.medtronic.model method), 86
main() (openaps.vendors.medtronic.mytest method), 86
main() (openaps.vendors.medtronic.read_clock method),

87
main() (openaps.vendors.medtronic.read_history_data

method), 87
main() (openaps.vendors.medtronic.read_status method),

88
main() (openaps.vendors.medtronic.reservoir method), 88
main() (openaps.vendors.medtronic.SameNameCommand

method), 85
main() (openaps.vendors.medtronic.scan method), 88
main() (openaps.vendors.medtronic.SelectedNameCommand

method), 85
main() (openaps.vendors.medtronic.Session method), 85
main() (openaps.vendors.medtronic.settings method), 89
main() (openaps.vendors.medtronic.suspend_pump

method), 89
main() (openaps.vendors.process.shell method), 89
main() (openaps.vendors.units.ConvertInput method), 90

makeSubcommand() (ope-
naps.cli.commandmapapp.CommandMapApp
method), 72

MAX_SESSION_DURATION (ope-
naps.vendors.medtronic.MedtronicTask at-
tribute), 84

maxCount (openaps.vendors.medtronic.iter_glucose at-
tribute), 86

MedtronicTask (class in openaps.vendors.medtronic), 84
metavar (openaps.cli.commandmapapp.CommandMapApp

attribute), 72
metavar (openaps.uses.UseDeviceCommands attribute),

78
meter_data (class in openaps.vendors.dexcom), 83
mg_dl_to_mmol_l() (openaps.glucose.convert.Convert

class method), 74
mmol_l_to_mg_dl() (openaps.glucose.convert.Convert

class method), 74
MMOLL_CONVERT_FACTOR (ope-

naps.glucose.convert.Convert attribute),
74

model (class in openaps.vendors.medtronic), 86
mytest (class in openaps.vendors.medtronic), 86

N
name (openaps.alias.alias.Alias attribute), 70
name (openaps.alias.AliasManagement attribute), 71
name (openaps.builtins.BuiltinApp attribute), 91
name (openaps.configurable.Configurable attribute), 91
name (openaps.reports.report.Report attribute), 76
name (openaps.reports.ReportManagementActions

attribute), 77
name (openaps.vendors.plugins.vendor.Vendor attribute),

79
name (openaps.vendors.plugins.VendorManagementActions

attribute), 79
no_op_serialize() (openaps.reports.reporters.Reporter

method), 75
no_uses() (in module openaps.uses), 78

O
openaps (module), 92
openaps.alias (module), 71
openaps.alias.add (module), 70
openaps.alias.alias (module), 70
openaps.alias.remove (module), 71
openaps.alias.show (module), 71
openaps.builtins (module), 91
openaps.cli (module), 73
openaps.cli.commandmapapp (module), 71
openaps.cli.helpers (module), 72
openaps.cli.subcommand (module), 72
openaps.config (module), 91
openaps.configurable (module), 91

Index 101

OpenAPS Documentation, Release 0.0.0

openaps.devices (module), 74
openaps.devices.add (module), 73
openaps.devices.device (module), 73
openaps.devices.remove (module), 74
openaps.devices.show (module), 74
openaps.glucose (module), 75
openaps.glucose.convert (module), 74
openaps.glucose.display (module), 75
openaps.init (module), 92
openaps.reports (module), 76
openaps.reports.add (module), 76
openaps.reports.invoke (module), 76
openaps.reports.remove (module), 76
openaps.reports.report (module), 76
openaps.reports.reporters (module), 75
openaps.reports.reporters.base (module), 75
openaps.reports.reporters.JSON (module), 75
openaps.reports.reporters.stdout (module), 75
openaps.reports.reporters.text (module), 75
openaps.reports.show (module), 76
openaps.uses (module), 77
openaps.uses.registry (module), 77
openaps.uses.use (module), 77
openaps.vendors (module), 90
openaps.vendors.dexcom (module), 80
openaps.vendors.medtronic (module), 84
openaps.vendors.plugins (module), 79
openaps.vendors.plugins.add (module), 79
openaps.vendors.plugins.remove (module), 79
openaps.vendors.plugins.show (module), 79
openaps.vendors.plugins.vendor (module), 79
openaps.vendors.process (module), 89
openaps.vendors.units (module), 89
OPTCRE (openaps.config.Config attribute), 91
optional (openaps.alias.alias.Alias attribute), 70
optional (openaps.configurable.Configurable attribute),

91
optional (openaps.devices.device.Device attribute), 73
optional (openaps.reports.report.Report attribute), 76
optional (openaps.vendors.plugins.vendor.Vendor at-

tribute), 79

P
plugin_uses() (in module openaps.uses), 78
prefix (openaps.alias.alias.Alias attribute), 70
prefix (openaps.configurable.Configurable attribute), 91
prefix (openaps.devices.device.Device attribute), 73
prefix (openaps.devices.device.ExtraConfig attribute), 74
prefix (openaps.reports.report.Report attribute), 76
prefix (openaps.vendors.plugins.vendor.Vendor attribute),

79
prep_parser() (openaps.cli.Base method), 73
prerender_json() (openaps.vendors.dexcom.calibrations

method), 80

prerender_json() (openaps.vendors.dexcom.glucose
method), 80

prerender_json() (openaps.vendors.dexcom.sensor_insertions
method), 84

prerender_json() (openaps.vendors.process.shell
method), 89

prerender_stdout() (openaps.vendors.dexcom.calibrations
method), 80

prerender_stdout() (openaps.vendors.dexcom.glucose
method), 81

prerender_stdout() (ope-
naps.vendors.dexcom.sensor_insertions
method), 84

prerender_text() (openaps.vendors.dexcom.calibrations
method), 80

prerender_text() (openaps.vendors.dexcom.glucose
method), 81

prerender_text() (openaps.vendors.dexcom.sensor_insertions
method), 84

prolog() (openaps.cli.Base method), 73
prolog() (openaps.cli.ConfigApp method), 73

R
range() (openaps.vendors.medtronic.iter_glucose

method), 86
range() (openaps.vendors.medtronic.iter_glucose_hours

method), 86
range() (openaps.vendors.medtronic.iter_pump method),

86
range() (openaps.vendors.medtronic.iter_pump_hours

method), 86
Read() (openaps.config.Config class method), 91
read() (openaps.devices.device.Device method), 73
read_basal_profile_A (class in ope-

naps.vendors.medtronic), 86
read_basal_profile_B (class in ope-

naps.vendors.medtronic), 87
read_basal_profile_std (class in ope-

naps.vendors.medtronic), 87
read_battery_status (class in openaps.vendors.medtronic),

87
read_bg_targets (class in openaps.vendors.medtronic), 87
read_carb_ratios (class in openaps.vendors.medtronic),

87
read_clock (class in openaps.vendors.medtronic), 87
read_config() (openaps.cli.ConfigApp method), 73
read_current_glucose_pages (class in ope-

naps.vendors.medtronic), 87
read_current_history_pages (class in ope-

naps.vendors.medtronic), 87
read_glucose_data (class in openaps.vendors.medtronic),

87
read_history_data (class in openaps.vendors.medtronic),

87

102 Index

OpenAPS Documentation, Release 0.0.0

read_insulin_sensitivies (class in ope-
naps.vendors.medtronic), 88

read_insulin_sensitivities (class in ope-
naps.vendors.medtronic), 88

read_selected_basal_profile (class in ope-
naps.vendors.medtronic), 88

read_settings (class in openaps.vendors.medtronic), 88
read_status (class in openaps.vendors.medtronic), 88
read_temp_basal (class in openaps.vendors.medtronic),

88
ReadBatteryLevel (class in openaps.vendors.dexcom), 80
ReadBatteryState (class in openaps.vendors.dexcom), 80
ReadManufacturingData (class in ope-

naps.vendors.dexcom), 80
ReadTransmitterId (class in openaps.vendors.dexcom),

80
record_stats (openaps.vendors.medtronic.MedtronicTask

attribute), 84
RECORD_TYPE (openaps.vendors.dexcom.glucose at-

tribute), 80
RECORD_TYPE (ope-

naps.vendors.dexcom.insertion_time attribute),
81

RECORD_TYPE (openaps.vendors.dexcom.iter_glucose
attribute), 81

RECORD_TYPE (ope-
naps.vendors.dexcom.iter_insertion_time
attribute), 82

RECORD_TYPE (ope-
naps.vendors.dexcom.iter_insertion_time_hours
attribute), 82

RECORD_TYPE (ope-
naps.vendors.dexcom.iter_meter_data at-
tribute), 82

RECORD_TYPE (ope-
naps.vendors.dexcom.iter_meter_data_hours
attribute), 82

RECORD_TYPE (openaps.vendors.dexcom.iter_sensor
attribute), 82

RECORD_TYPE (ope-
naps.vendors.dexcom.iter_sensor_hours
attribute), 82

RECORD_TYPE (ope-
naps.vendors.dexcom.iter_user_event_data
attribute), 83

RECORD_TYPE (ope-
naps.vendors.dexcom.iter_user_event_data_hours
attribute), 83

RECORD_TYPE (openaps.vendors.dexcom.meter_data
attribute), 83

RECORD_TYPE (openaps.vendors.dexcom.sensor at-
tribute), 83

RECORD_TYPE (ope-
naps.vendors.dexcom.user_event_data at-

tribute), 84
register_uses() (openaps.devices.device.Device method),

73
Registry (class in openaps.uses.registry), 77
remove() (openaps.alias.alias.Alias method), 70
remove() (openaps.configurable.Configurable method),

91
remove_device() (openaps.config.Config method), 91
Report (class in openaps.reports.report), 76
ReportAction (class in openaps.reports), 76
Reporter (class in openaps.reports.reporters), 75
ReportManagementActions (class in openaps.reports), 76
required (openaps.alias.alias.Alias attribute), 70
required (openaps.configurable.Configurable attribute),

91
required (openaps.devices.device.Device attribute), 73
required (openaps.reports.report.Report attribute), 76
required (openaps.vendors.plugins.vendor.Vendor at-

tribute), 79
required_inputs (openaps.vendors.medtronic.set_temp_basal

attribute), 89
requires_session (openaps.vendors.medtronic.MedtronicTask

attribute), 84
requires_session (openaps.vendors.medtronic.mytest at-

tribute), 86
requires_session (openaps.vendors.medtronic.Session at-

tribute), 85
reservoir (class in openaps.vendors.medtronic), 88
resume_pump (class in openaps.vendors.medtronic), 88
run() (openaps.cli.Base method), 73
RunnableAlias (class in openaps.builtins), 91

S
SameNameCommand (class in ope-

naps.vendors.medtronic), 85
save() (openaps.config.Config method), 91
save_session (openaps.vendors.medtronic.MedtronicTask

attribute), 85
scan (class in openaps.vendors.dexcom), 83
scan (class in openaps.vendors.medtronic), 88
scanner() (openaps.vendors.dexcom.scan method), 83
scanner() (openaps.vendors.medtronic.scan method), 88
section_name() (openaps.alias.alias.Alias method), 70
section_name() (openaps.configurable.Configurable

method), 91
selected (openaps.vendors.medtronic.read_bg_targets at-

tribute), 87
selected() (openaps.cli.commandmapapp.CommandMapApp

method), 72
SelectedNameCommand (class in ope-

naps.vendors.medtronic), 85
sensor (class in openaps.vendors.dexcom), 83
sensor_insertions (class in openaps.vendors.dexcom), 84
serialize() (in module openaps.reports.reporters.base), 75

Index 103

OpenAPS Documentation, Release 0.0.0

serialize() (in module openaps.reports.reporters.JSON),
75

serialize() (in module openaps.reports.reporters.stdout),
75

serialize() (in module openaps.reports.reporters.text), 75
serialize() (openaps.reports.reporters.Reporter method),

75
Session (class in openaps.vendors.medtronic), 85
set_config() (in module openaps.vendors.dexcom), 84
set_config() (in module openaps.vendors.medtronic), 88
set_config() (in module openaps.vendors.process), 89
set_config() (in module openaps.vendors.units), 90
set_converter() (openaps.vendors.units.ConvertInput

method), 90
set_ini_path() (openaps.config.Config method), 91
set_temp_basal (class in openaps.vendors.medtronic), 88
settings (class in openaps.vendors.medtronic), 89
setup_application() (in module openaps.devices), 74
setup_application() (openaps.alias.AliasAction method),

71
setup_application() (ope-

naps.cli.commandmapapp.CommandMapApp.Subcommand
method), 72

setup_application() (ope-
naps.cli.subcommand.Subcommand method),
72

setup_application() (openaps.devices.DeviceConfig
method), 74

setup_application() (openaps.reports.ReportAction
method), 76

setup_application() (openaps.uses.DeviceUsageTask
method), 78

setup_application() (openaps.uses.UseDeviceTask
method), 78

setup_application() (openaps.vendors.medtronic.Session
method), 85

setup_application() (ope-
naps.vendors.plugins.VendorAction method),
79

setup_medtronic() (ope-
naps.vendors.medtronic.MedtronicTask
method), 85

shell (class in openaps.vendors.process), 89
status (class in openaps.vendors.medtronic), 89
store() (openaps.alias.alias.Alias method), 71
store() (openaps.configurable.Configurable method), 92
store() (openaps.devices.device.Device method), 73
Subcommand (class in openaps.cli.subcommand), 72
Subcommand (openaps.alias.AliasManagement at-

tribute), 71
Subcommand (openaps.reports.ReportManagementActions

attribute), 76
Subcommand (openaps.uses.DeviceUsageMap attribute),

77

Subcommand (openaps.uses.UseDeviceCommands at-
tribute), 78

Subcommand (openaps.vendors.plugins.VendorManagementActions
attribute), 79

Subcommand (openaps.vendors.VendorConfigurations
attribute), 90

suspend_pump (class in openaps.vendors.medtronic), 89

T
TEXT_COLUMNS (openaps.vendors.dexcom.glucose

attribute), 80
TEXT_COLUMNS (ope-

naps.vendors.dexcom.insertion_time attribute),
81

TEXT_COLUMNS (ope-
naps.vendors.dexcom.iter_insertion_time
attribute), 82

TEXT_COLUMNS (ope-
naps.vendors.dexcom.iter_insertion_time_hours
attribute), 82

TEXT_COLUMNS (ope-
naps.vendors.dexcom.iter_meter_data at-
tribute), 82

TEXT_COLUMNS (ope-
naps.vendors.dexcom.iter_meter_data_hours
attribute), 82

TEXT_COLUMNS (ope-
naps.vendors.dexcom.iter_sensor attribute),
82

TEXT_COLUMNS (ope-
naps.vendors.dexcom.iter_sensor_hours
attribute), 82

TEXT_COLUMNS (ope-
naps.vendors.dexcom.iter_user_event_data
attribute), 83

TEXT_COLUMNS (ope-
naps.vendors.dexcom.iter_user_event_data_hours
attribute), 83

TEXT_COLUMNS (ope-
naps.vendors.dexcom.meter_data attribute),
83

TEXT_COLUMNS (openaps.vendors.dexcom.sensor at-
tribute), 83

TEXT_COLUMNS (ope-
naps.vendors.dexcom.user_event_data at-
tribute), 84

title (openaps.alias.AliasManagement attribute), 71
title (openaps.reports.ReportManagementActions at-

tribute), 77
title (openaps.vendors.plugins.VendorManagementActions

attribute), 79
to_ini() (openaps.uses.use.Use method), 77

104 Index

OpenAPS Documentation, Release 0.0.0

U
update_session_info() (ope-

naps.vendors.medtronic.MedtronicTask
method), 85

upload_program() (openaps.vendors.medtronic.bolus
method), 85

upload_program() (ope-
naps.vendors.medtronic.InputProgramRequired
method), 84

upload_program() (ope-
naps.vendors.medtronic.set_temp_basal
method), 89

url_template (openaps.alias.alias.Alias attribute), 71
url_template (openaps.configurable.Configurable at-

tribute), 92
url_template (openaps.reports.report.Report attribute), 76
url_template (openaps.vendors.plugins.vendor.Vendor at-

tribute), 79
Use (class in openaps.uses.use), 77
UseDeviceCommands (class in openaps.uses), 78
UseDeviceTask (class in openaps.uses), 78
user_event_data (class in openaps.vendors.dexcom), 84

V
Vendor (class in openaps.vendors.plugins.vendor), 79
vendor (openaps.devices.device.Device attribute), 73
VendorAction (class in openaps.vendors.plugins), 79
VendorConfigurations (class in openaps.vendors), 90
VendorManagementActions (class in ope-

naps.vendors.plugins), 79

Index 105

	Introduction
	Understanding this guide
	Before you get started
	What you won't see in this guide

	Ways to Contribute
	Where to go for help with your implementation
	Gitter
	Google Groups
	Issues on openaps GitHub
	Other online forums

	Walkthrough
	Phase 0: General Setup
	General Setup and Project Prep
	Baseline data
	Hardware
	Setting Up Your Raspberry Pi
	Setting Up openaps and Dependencies

	Phase 1: Logging, Cleaning, and Analyzing Your Data
	Phase 1: Logging, Cleaning, and Analyzing Your Data
	Visualization and Monitoring

	Phase 2: Build a Manual System
	Phase 2: Creating an Open Loop
	Configuring and Learning to Use openaps Tools
	Building preflight and other safety checks
	Add the oref0 Virtual Devices
	Organizing the reports
	The get-profile process
	The calculate-iob process
	The determine-basal process
	Adding aliases
	Checking your reports
	Enacting the suggested action
	Cleaning CGM data from Minimed CGM systems
	Running an open loop with oref0

	Phase 3: Automation
	Phase 3: Understanding Your Open Loop
	Understanding the output of oref0-determine-basal

	Phase 4: Iterate and Improve
	Phase 4: Starting to Close the Loop
	Using cron to create a schedule for your loop
	Observing the closed loop
	Troubleshooting the closed loop

	Phase 5: Tuning the Closed Loop
	Phase 5: Tuning the Closed Loop
	Going beyond low glucose suspend mode
	Tuning your targets

	Phase 6: Iterate and Improve the Closed Loop
	Phase 6: Iterating on Your Closed Loop
	So you think you're looping? Now keep up to date!
	Testing during the day
	Advanced features
	Configuring Automatic Sensitivity Mode

	Resources
	Making your first PR (pull request)
	Technical Resources
	Raspberry Pi
	Git and GitHub
	Linux Shell / Terminal
	Python
	Useful Apps
	Markdown & GitBook

	Troubleshooting
	Generally useful linux commands
	Dealing with the CareLink USB Stick
	Dealing with a corrupted git repository
	Environment variables
	Common error messages

	OpenAPS Overview and Project History
	Other People, Projects & Tools
	People
	APS & Diabetes Data Tools

	Commercial APS Efforts
	Frequently Asked Questions
	What is a Closed Loop?
	What does an OpenAPS closed loop look like?

	Glossary

	Reference
	Manuals
	openaps
	oref0
	Nightscout
	mm

	API
	API Reference

	Indices and tables
	Python Module Index

